Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Renewable energy obtained from wastewater
by Staff Writers
Barcelona, Spain (SPX) Feb 25, 2015


File image.

Currently, there are treatments in which wastewater can flow out to the river or sea without causing any environmental problems. These technologies however entail high energy costs, mainly in aeration and pumping, and an elevated economic cost in treating the sludge left over from the treatment process.

Wastewater contains an elevated amount of chemical energy in the form of organic contaminants. In order to make use of this energy, researchers from around the world study ways to recover it in the form of hydrogen, a process which efficiently eliminates organic matter from wastewater. It not only reduces the amount of energy needed during the process, it also obtains energy from the produced hydrogen.

The key to achieve this is what is known as microbial electrolysis cells (MEC). What is needed is a very special type of bacteria, exoelectrogenic bacteria, capable of oxidising organic material and generating electricity which in turn produces hydrogen. These cells only need a bit of added voltage, much less than what is used for water electrolysis, and which is recovered with the hydrogen, thereby generating clean energy.

Researchers from the Bioelectrochemistry group of the UAB Department of Chemical Engineering have achieved to improve the energetic efficiency of the cells. The experimental results were very positive and demonstrated that these systems would have a market niche at industrial scale.

The scientists, coordinated by professors Albert Guisasola and Juan Antonio Baeza, used real wastewater instead of the biodegradable synthetic water used in most experiments, and achieved a biological production of hydrogen and, to a large extent, the recovery of a good part of the energy contained in the residues.

To achieve this, researchers selected a set of bacteria capable of transforming complex substrates such as methanol, dairy waste, starch and glycerol, into simpler compounds which could, in turn, be degraded by exoelectrogens.

The results were very positive and high hydrogen production and energy intensity was obtained through the wastewater treatment. In the long term, the MEC fed with dairy wastewater yielded the best results in terms of current intensity (150 amps per cubic metre of reactor), in hydrogen production (0.94 cubic metres of hydrogen per cubic metre of reactor and day), and in recovery of electrons at the cathode (91%); all that with an applied voltage of only 0.8 V.

These results are the basis for a potential industrial development of this technology and therefore for the creation of systems capable of producing hydrogen from wastewater treatment.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Universitat Autonoma de Barcelona
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Simulating superconducting materials with ultracold atoms
Houston TX (SPX) Feb 24, 2015
Using ultracold atoms as a stand-in for electrons, a Rice University-based team of physicists has simulated superconducting materials and made headway on a problem that's vexed physicists for nearly three decades. The research was carried out by an international team of experimental and theoretical physicists and appears online this week in the journal Nature. Team leader Randy Hulet, an e ... read more


ENERGY TECH
Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

LRO finds lunar hydrogen more abundant on Moon's pole-facing slopes

ENERGY TECH
How Can We Protect Mars From Earth, While Searching For Life

The Search For Volcanic Eruptions On Mars Reaches The Next Level

Using Curiosity to Search for Life

Curiosity Self-Portrait at 'Mojave' Site on Mount Sharp

ENERGY TECH
Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

Fast visas and dim sum: Spain seeks to attract Chinese tourists

Industry: Risk aversion costs more than 'fast failure'

ENERGY TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

ENERGY TECH
Russia to use International Space Station till 2024

NASA preparing to reassemble International Space Station

Spacewalking 'cable guys' wrap up work outside station

Space Station 3-D Printed Items, Seedlings Return in the Belly of a Dragon

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Leaders share messages, priorities at AFA Symposium

Moog offers "SoftRide" for enhanced spacecraft protection during launch

Russian-Ukrainian Satan Rocket to Launch South Korean Satellite as Planned

ENERGY TECH
The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

"Vulcan Planets" - Inside-Out Formation of Super-Earths

ENERGY TECH
Japan's NTT to buy German data centre operator: report

Moving molecule writes letters

New filter could advance terahertz data transmission

A simple way to make and reconfigure complex emulsions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.