Subscribe free to our newsletters via your
. 24/7 Space News .




CAR TECH
Relieving electric vehicle range anxiety with improved batteries
by Staff Writers
Richland WA (SPX) Apr 19, 2014


Pacific Northwest National Laboratory developed a nickel-based metal organic framework, shown here in an illustration, to hold onto polysulfide molecules in the cathodes of lithium-sulfur batteries and extend the batteries' lifespans. The colored spheres in this image represent the 3D material's tiny pores into with the polysulfides become trapped. Image courtesy Pacific Northwest National Laboratory.

Electric vehicles could travel farther and more renewable energy could be stored with lithium-sulfur batteries that use a unique powdery nanomaterial.

Researchers added the powder, a kind of nanomaterial called a metal organic framework, to the battery's cathode to capture problematic polysulfides that usually cause lithium-sulfur batteries to fail after a few charges. A paper describing the material and its performance was published online April 4 in the American Chemical Society journal Nano Letters.

"Lithium-sulfur batteries have the potential to power tomorrow's electric vehicles, but they need to last longer after each charge and be able to be repeatedly recharged," said materials chemist Jie Xiao of the Department of Energy's Pacific Northwest National Laboratory. "Our metal organic framework may offer a new way to make that happen."

Today's electric vehicles are typically powered by lithium-ion batteries. But the chemistry of lithium-ion batteries limits how much energy they can store. As a result, electric vehicle drivers are often anxious about how far they can go before needing to charge.

One promising solution is the lithium-sulfur battery, which can hold as much as four times more energy per mass than lithium-ion batteries. This would enable electric vehicles to drive farther on a single charge, as well as help store more renewable energy. The down side of lithium-sulfur batteries, however, is they have a much shorter lifespan because they can't currently be charged as many times as lithium-ion batteries.

Energy Storage 101
The reason can be found in how batteries work. Most batteries have two electrodes: one is positively charged and called a cathode, while the second is negative and called an anode. Electricity is generated when electrons flow through a wire that connects the two. To control the electrons, positively charged atoms shuffle from one electrode to the other through another path: the electrolyte solution in which the electrodes sit.

The lithium-sulfur battery's main obstacles are unwanted side reactions that cut the battery's life short. The undesirable action starts on the battery's sulfur-containing cathode, which slowly disintegrates and forms molecules called polysulfides that dissolve into the liquid electrolyte.

Some of the sulfur - an essential part of the battery's chemical reactions - never returns to the cathode. As a result, the cathode has less material to keep the reactions going and the battery quickly dies.

New materials for better batteries
Researchers worldwide are trying to improve materials for each battery component to increase the lifespan and mainstream use of lithium-sulfur batteries. For this research, Xiao and her colleagues honed in on the cathode to stop polysulfides from moving through the electrolyte.

Many materials with tiny holes have been examined to physically trap polysulfides inside the cathode. Metal organic frameworks are porous, but the added strength of PNNL's material is its ability to strongly attract the polysulfide molecules.

The framework's positively charged nickel center tightly binds the polysulfide molecules to the cathodes. The result is a coordinate covalent bond that, when combined with the framework's porous structure, causes the polysulfides to stay put.

"The MOF's highly porous structure is a plus that further holds the polysulfide tight and makes it stay within the cathode," said PNNL electrochemist Jianming Zheng.

Nanomaterial is key
Metal organic frameworks - also called MOFs - are crystal-like compounds made of metal clusters connected to organic molecules, or linkers. Together, the clusters and linkers assemble into porous 3-D structures. MOFs can contain a number of different elements. PNNL researchers chose the transition metal nickel as the central element for this particular MOF because of its strong ability to interact with sulfur.

During lab tests, a lithium-sulfur battery with PNNL's MOF cathode maintained 89 percent of its initial power capacity after 100 charge-and discharge cycles. Having shown the effectiveness of their MOF cathode, PNNL researchers now plan to further improve the cathode's mixture of materials so it can hold more energy.

The team also needs to develop a larger prototype and test it for longer periods of time to evaluate the cathode's performance for real-world, large-scale applications.

PNNL is also using MOFs in energy-efficient adsorption chillers and to develop new catalysts to speed up chemical reactions.

"MOFs are probably best known for capturing gases such as carbon dioxide," Xiao said. "This study opens up lithium-sulfur batteries as a new and promising field for the nanomaterial."

This research was funded by the Department of Energy's Office of Energy Efficiency and Renewable Energy. Researchers analyzed chemical interactions on the MOF cathode with instruments at EMSL, DOE's Environmental Molecular Sciences Laboratory at PNNL.

In January, a Nature Communications paper by Xiao and some of her PNNL colleagues described another possible solution for lithium-sulfur batteries: developing a hybrid anode that uses a graphite shield to block polysulfides.

Jianming Zheng, Jian Tian, Dangxin Wu, Meng Gu, Wu Xu, Chongmin Wang, Fei Gao, Mark H. Engelhard, Ji-Guang Zhang, Jun Liu and Jie Xiao, "Lewis Acid-Base Interactions Between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries," Nano Letters, published online April 4, 2014, DOI: 10.1021/nl404721h.

.


Related Links
Pacific Northwest National Laboratory
Car Technology at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CAR TECH
Chinese dream trumps environment as cars sales boom
Shanghai (AFP) April 18, 2014
When accountant Ariel Wang bought a new car a few weeks ago, environmental protection was far from her mind even though smog has reached crisis levels in China's commercial hub Shanghai. She settled on a sturdy sport utility vehicle, the Audi Q5, as the ideal family car for her husband's daily commute to work and transport for her young daughter at the weekends. "We didn't really think ... read more


CAR TECH
Russian Federal Space Agency is elaborating Moon exploration program

Science, Discovery Channels to broadcast private race to the moon

Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

CAR TECH
Mars' halcyon times may have been fleeting

Gusev Crater once held a lake after all

Mars Exploration in a Deep Mine

Images From NASA Mars Rover Include Bright Spots

CAR TECH
Veggie Will Expand Fresh Food Production on ISS

Reporters See NASA's Latest High Tech Exploration Tool Before Testing

Recycling astronaut urine for energy and drinking water

Orion Avionics System Ready for First Test Flight

CAR TECH
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

CAR TECH
'Cherry tree from space' mystery baffles Japan

Extra-terrestrial Tweet-up links Tokyo with space

Russian cargo ship docks to space station

Progress Departs, New Cargo Ships Awaiting Launch

CAR TECH
NASA Ames Launches Nanosatellites, Science Experiments on SpaceX Rocket

On-board camera provides a unique perspective on Arianespace Flight VS07

The DZZ-HR satellite is fueled for Arianespace's upcoming Vega launch

EUTELSAT 3B Mission Status Update

CAR TECH
Chance meeting creates celestial diamond ring

Faraway Moon or Faint Star? Possible Exomoon Found

The Importance of Planetary Plumes

Orbital physics is child's play with 'Super Planet Crash'

CAR TECH
New Self-healing Plastics Developed

Deep sea rocks may be future source for rare earth metals

New technique takes cues from astronomy and ophthalmology to sharpen microscope images

Cork trees offer greener source of polyester




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.