Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Regenerating plastic grows back after damage
by Liz Ahlberg for UI News
Champaign IL (SPX) May 14, 2014


Illinois researchers have developed materials that not only heal, but regenerate. The restorative material is delivered through two, isolated fluid streams (dyed red and blue). The liquid immediately gels and later hardens, resulting in recovery of the entire damaged region. This image is halfway through the restoration process. Photo by Ryan Gergely.

Looking at a smooth sheet of plastic in one University of Illinois laboratory, no one would guess that an impact had recently blasted a hole through it. Illinois researchers have developed materials that not only heal, but regenerate. Until now, self-repairing materials could only bond tiny microscopic cracks. The new regenerating materials fill in large cracks and holes by regrowing material.

Led by professor Scott White, the research team comprises professors Jeffry S. Moore and Nancy Sottos and graduate students Brett Krull, Windy Santa Cruz and Ryan Gergely. They report their work in the May 9 issue of the journal Science.

"We have demonstrated repair of a nonliving, synthetic materials system in a way that is reminiscent of repair-by-regrowth as seen in some living systems," said Moore, a professor of chemistry.

Such self-repair capabilities would be a boon not only for commercial goods - imagine a mangled car bumper that repairs itself within minutes of an accident - but also for parts and products that are difficult to replace or repair, such as those used in aerospace applications.

The regenerating capabilities build on the team's previous work in developing vascular materials. Using specially formulated fibers that disintegrate, the researchers can create materials with networks of capillaries inspired by biological circulatory systems.

"Vascular delivery lets us deliver a large volume of healing agents - which, in turn, enables restoration of large damage zones," said Sottos, a professor of materials science and engineering. "The vascular approach also enables multiple restorations if the material is damaged more than once."

For regenerating materials, two adjoining, parallel capillaries are filled with regenerative chemicals that flow out when damage occurs. The two liquids mix to form a gel, which spans the gap caused by damage, filling in cracks and holes. Then the gel hardens into a strong polymer, restoring the plastic's mechanical strength.

"We have to battle a lot of extrinsic factors for regeneration, including gravity," said study leader White, a professor of aerospace engineering.

"The reactive liquids we use form a gel fairly quickly, so that as it's released it starts to harden immediately. If it didn't, the liquids would just pour out of the damaged area and you'd essentially bleed out. Because it forms a gel, it supports and retains the fluids. Since it's not a structural material yet, we can continue the regrowth process by pumping more fluid into the hole."

The team demonstrated their regenerating system on the two biggest classes of commercial plastics: thermoplastics and thermosets. The researchers can tune the chemical reactions to control the speed of the gel formation or the speed of the hardening, depending on the kind of damage. For example, a bullet impact might cause a radiating series of cracks as well as a central hole, so the gel reaction could be slowed to allow the chemicals to seep into the cracks before hardening.

The researchers envision commercial plastics and polymers with vascular networks filled with regenerative agents ready to be deployed whenever damage occurs, much like biological healing. Their previous work established ease of manufacturing, so now they are working to optimize the regenerative chemical systems for different types of materials.

"For the first time, we've shown that you can regenerate lost material in a structural polymer. That's the kicker here," White said, "Prior to this work, if you cut off a piece of material, it's gone. Now we've shown that the material can actually regrow."

.


Related Links
Beckman Institute for Advanced Science and Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
ORNL examines clues for superconductivity in an iron-based material
Oak Ridge TN (SPX) May 07, 2014
For the first time, scientists have a clearer understanding of how to control the appearance of a superconducting phase in a material, adding crucial fundamental knowledge and perhaps setting the stage for advances in the field of superconductivity. The paper, published in Physical Review Letters, focuses on a calcium-iron-arsenide single crystal, which has structural, thermodynamic and tr ... read more


TECH SPACE
Russia to begin Moon colonization in 2030

LRO View of Earth

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

John C. Houbolt, Unsung Hero of the Apollo Program, Dies at Age 95

TECH SPACE
Reset and Recovery for Opportunity

NASA wants greenhouse on Mars by 2021

NASA's Curiosity Rover Drills Sandstone Slab on Mars

Mars mission scientist Colin Pillinger dies

TECH SPACE
More Plant Science as Expedition 39 Trio Trains for Departure

'Convergent' Research Solves Problems that Cross Disciplinary Boundaries

NASA Astronauts go underwater to test tools for a mission to an asteroid

Pioneering Test Pilot Bill Dana Dies at Age 83

TECH SPACE
The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

China launches experimental satellite

TECH SPACE
Ham video premiers on Space Station

NASA Seeks to Evolve ISS for New Commercial Opportunities

Astronauts Complete Short Spacewalk to Replace Backup Computer

No Official Confirmation of NASA Severing Ties with Russian Space Agency

TECH SPACE
Preliminary Injunction Lifted - ULA Purchase of RD-180 Engines Complies with Sanctions

Replacing Russian-made rocket engines is not easy

SHERPA launch service deal to deploy 1200 kilo smallsat payloads

Pre-launch processing begins for the O3b Networks satellites

TECH SPACE
Length of Exoplanet Day Measured for First Time

Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun

Alien planet's rotation speed clocked for first time

Seven Samples from the Solar System's Birth

TECH SPACE
US data capital poised to advance leadership position in big data

Airbus Defence and Space in radar technology study

Saab adds new radar variants

Appeal court revives Oracle-Google copyright battle




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.