Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Rediscovering spontaneous light emission
by Staff Writers
Berkeley CA (SPX) Feb 05, 2015


Spontaneous light emissions from LEDs can be substantially enhanced when coupled to the right optical antenna, making them comparable to the stimulated emissions from lasers.

Berkeley Lab researchers have developed a nano-sized optical antenna that can greatly enhance the spontaneous emission of light from atoms, molecules and semiconductor quantum dots. This advance opens the door to light-emitting diodes (LEDs) that can replace lasers for short-range optical communications, including optical interconnects for microchips, plus a host of other potential applications.

"Since the invention of the laser, spontaneous light emission has been looked down upon in favor of stimulated light emission," says Eli Yablonovitch, an electrical engineer with Berkeley Lab's Materials Sciences Division.

"However, with the right optical antenna, spontaneous emissions can actually be faster than stimulated emissions."

Yablonovitch, who also holds a faculty appointment with the University of California (UC) Berkeley where he directs the NSF Center for Energy Efficient Electronics Science (E3S), and is a member of the Kavli Energy NanoSciences Institute at Berkeley (Kavli ENSI), led a team that used an external antenna made from gold to effectively boost the spontaneous light emission of a nanorod made from Indium Gallium Arsenide Phosphide (InGaAsP) by 115 times.

This is approaching the 200-fold increase that is considered the landmark in speed difference between stimulated and spontaneous emissions. When a 200-fold increase is reached, spontaneous emission rates will exceed those of stimulated emissions.

"With optical antennas, we believe that spontaneous emission rate enhancements of better than 2,500 times are possible while still maintaining light emission efficiency greater than 50-percent," Yablonovitch says. "Replacing wires on microchips with antenna enhanced LEDs would allow for faster interconnectivity and greater computational power."

The results of this study are reported in the Proceedings of the National Academy of Sciences (PNAS) in a paper titled "Optical antenna enhanced spontaneous emission." Yablonovitch and UC Berkeley's Ming Wua are the corresponding authors. Co-authors are Michael Eggleston, Kevin Messer and Liming Zhang.

In the world of high technology lasers are ubiquitous, the reigning workhorse for high-speed optical communications. Lasers, however, have downsides for communications over short distances, i.e., one meter or less - they consume too much power and typically take up too much space. LEDs would be a much more efficient alternative but have been limited by their spontaneous emission rates.

"Spontaneous emission from molecular-sized radiators is slowed by many orders of magnitude because molecules are too small to act as their own antennas," Yablonovitch says. "The key to speeding up these spontaneous emissions is to couple the radiating molecule to a half-wavelength antenna. Even though we've had antennas in radio for 120 years, somehow we've overlooked antennas in optics. Sometimes the great discoveries are looking right at us and waiting."

For their optical antenna, Yablonovitch and his colleagues used an arch antenna configuration. The surface of a square-shaped InGaAsP nanorod was coated with a layer of titanium dioxide to provide isolation between the nanorod and a gold wire that was deposited perpendicularly over the nanorod to create the antenna.

The InGaAsP semiconductor that served as the spontaneous light-emitting material is a material already in wide use for infrared laser communication and photo-detectors.

In addition to short distance communication applications, LEDs equipped with optical antennas could also find important use in photodetectors. Optical antennas could also be applied to imaging, bio-sensing and data storage applications.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Lawrence Berkeley National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Researchers use oxides to flip graphene conductivity
University Park PA (SPX) Jan 28, 2015
Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, plus its essentially two-dimensional form factor, make it an attractive alternative, but several hurdles to its adoption remain. A team of researchers from the University of Penns ... read more


CHIP TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

CHIP TECH
Meteorite may represent 'bulk background' of Mars' battered crust

Several Drives This Week Put Opportunity Near Marathon Distance

Gully patterns document Martian climate cycles

The two faces of Mars

CHIP TECH
NASA gets $18.5 billion in White House budget proposal

NASA hails spending boost under Obama budget proposal

Mini Models Fire Up for SLS Base Heating Tests

Sundance doc examines real-life Close Encounter

CHIP TECH
More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

CHIP TECH
The Strange Way Fluids Slosh on the International Space Station

NASA's CATS Installed on ISS by Robotic Handoff

Roscosmos, NASA Still Planning on Sending Men Into Space

Russian Cargo Spacecraft to Supply ISS With Black Caviar

CHIP TECH
Moog Supports Delta 2 of SMAP satellite

Iran Launches Satellite Into Space, First Since 2012

British Satellite to Be Launched by Russian Proton-M Carrier Rocket

Russia launches British comms satellite into space

CHIP TECH
"Vulcan Planets" - Inside-Out Formation of Super-Earths

Habitable Evaporated Cores

Dawn ahead!

Smaller Gas Giants Could Support Life

CHIP TECH
Eyes In The Sky: Britain's GCHQ Sets Sights on Space

How ionic: Scaffolding is in charge of calcium carbonate crystals

Graphene edges can be tailor-made

Scientists 'bend' acoustic and elastic waves with new metamaterials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.