. 24/7 Space News .
EXO WORLDS
Rare mineral discovered in plants for first time
by Staff Writers
Cambridge, UK (SPX) Mar 07, 2018

This is Saxifraga sempervivum -- a species of alpine plant in Cambridge University Botanic Gardens that scientists discovered was 'producing pure vaterite'. Image courtesy Paul Aston

Scientists at Sainsbury Laboratory Cambridge University have found that the mineral vaterite, a form (polymorph) of calcium carbonate, is a dominant component of the protective silvery-white crust that forms on the leaves of a number of alpine plants, which are part of the Garden's national collection of European Saxifraga species.

Naturally occurring vaterite is rarely found on Earth. Small amounts of vaterite crystals have been found in some sea and freshwater crustaceans, bird eggs, the inner ears of salmon, meteorites and rocks. This is the first time that the rare and unstable mineral has been found in such a large quantity and the first time it has been found to be associated with plants.

The discovery was made through a University of Cambridge collaboration between the Sainsbury Laboratory Cambridge University microscopy facility and Cambridge University Botanic Garden, as part of an ongoing research project that is probing the inner workings of plants in the Garden using new microscopy technologies. The research findings have been published in the latest edition of Flora.

The laboratory's Microscopy Core Facility Manager, Dr Raymond Wightman, said vaterite was of interest to the pharmaceutical industry: "Biochemists are working to synthetically manufacture vaterite as it has potential for use in drug delivery, but it is not easy to make.

Vaterite has special properties that make it a potentially superior carrier for medications due to its high loading capacity, high uptake by cells and its solubility properties that enable it to deliver a sustained and targeted release of therapeutic medicines to patients. For instance, vaterite nanoparticles loaded with anti-cancer drugs appear to offload the drug slowly only at sites of cancers and therefore limit the negative side-effects of the drug."

Other potential uses of vaterite include improving the cements used in orthopaedic surgery and as an industrial application improving the quality of papers for inkjet printing by reducing the lateral spread of ink.

Dr Wightman said vaterite was often associated with outer space and had been detected in planetary objects in the Solar System and meteorites: "Vaterite is not very stable in the Earth's humid atmosphere as it often reverts to more common forms of calcium carbonate, such as calcite. This makes it even more remarkable that we have found vaterite in such large quantities on the surface of plant leaves."

Botanic Garden Alpine and Woodland Supervisor, Paul Aston, and colleague Simon Wallis, are pioneering studies into the cellular-level structures of these alpine plants with Dr Wightman.

Mr Wallis, who is also Chairman of the international Saxifrage Society, said: "We started by sampling as wide a range of saxifrage species as possible from our collection. The microscope analysis of the plant material came up with the exciting discovery that some plants were exuding vaterite from "chalk glands" (hydathodes) on the margins of their leaves. We then noticed a pattern emerging. The plants producing vaterite were from the section of Saxifraga called Porphyrion.

Further to this, it appears that although many species in this section produced vaterite along with calcite, there was at least one species, Saxifraga sempervivum, that was producing pure vaterite."

Dr Wightman said two new pieces of equipment at the microscopy facility were being used to reveal the inner workings of the plants and uncovering cellular structures never before described: "Our cryo-scanning electron microscope allows us to view, in great detail, cells and plant tissues in their "native" fully hydrated state by freezing samples quickly and maintaining cold under a vacuum for electron microscopy. We are also using a Raman microscope to identify and map molecules.

In this case, the microscope not only identified signatures corresponding to calcium carbonate as forming the crust, but was also able to differentiate between the calcite and vaterite forms when it was present as a mixture while still attached to the leaf surface."

So why do these species produce a calcium carbonate crystal crust and why are some crusts calcite and others vaterite?

The Cambridge University Botanic Garden team is hoping to answer this question through further analysis of the leaf anatomy of the Saxifraga group. They suspect that vaterite may be present on more plant species, but that the unstable mineral is being converted to calcite when exposed to wind and rain. This may also be the reason why some plants have both vaterite and calcite present at the same time.

The microscopy research has also turned up some novel cell structures. Mr Aston added: "As well as producing vaterite, Saxifraga scardica has a special tissue surrounding the leaf edge that appears to deflect light from the edge into the leaf. The cells appear to be producing novel cell wall structures to achieve this deflection. This may be to help the plant to collect more light, particularly if it is growing in partly shaded environments."

The team believes the novel cell wall structures of Saxifrages could one day help inform the manufacture of new bio-inspired optical devices and photonic structures for industry such as communication cables and fibre optics.

Mr Aston said these initial discoveries were just the start: "We expect that there may be other plants that also produce vaterite and have special leaf anatomies that have evolved in harsh environments like alpine regions. The next species we will be looking to study is Saxifraga lolaensis, which has super tiny leaves with an organisation of cell types not seen in a leaf before, and which we think will reveal more fascinating secrets about the complexity of plants."

There is a risk that some of these tiny but amazing alpine plants could potentially disappear due to climate change, damage from alpine recreation sports and over-collecting. There is still much to learn about these plants, but the collaborative work of the Sainsbury Laboratory and Cambridge University Botanic Garden team is revealing fascinating insights into leaf anatomy and biochemistry as well as demonstrating the potential for Saxifrages to supply a new range of biomaterials.

Research paper


Related Links
University of Cambridge
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
When two species become one: New study examines 'speciation reversal'
Washington (UPI) Mar 2, 2018
Friendship may be forever, but species diversification isn't. New research suggests speciation is a two-way street. In a new study, scientists offer evidence of two distinct common raven lineages merging to become one. Researchers dubbed the phenomenon "speciation reversal." Until now, evolutionary biologists have mostly focused on the process of species divergence, or diversification, the branching process that makes the tree of life so complex. But the latest evidence - published this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Cosmonaut, two US astronauts return to Earth from ISS

ISS Expedition 54 crew land safely in Kazakhstan

Aerospace introduces new Senior Advisory Council for space policy

International team publishes roadmap to enhance radioresistance for space colonization

EXO WORLDS
SLS Intertank loaded for shipment, structural testing

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

EXO WORLDS
Curiosity tests a new way to drill on Mars

NASA InSight mission to Mars arrives at launch site

Atacama Desert study offers glimpse of what life on Mars could look like

Life in world's driest desert seen as sign of potential life on Mars

EXO WORLDS
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

EXO WORLDS
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

Iridium Certus broadband readies for DOD wsers with COMSAT

EXO WORLDS
Common bricks can be used to detect past presence of uranium, plutonium

Majorana runners go long range: New topological phases of matter unveiled

Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

EXO WORLDS
NASA finds a large amount of water in an exoplanet's atmosphere

When two species become one: New study examines 'speciation reversal'

Alien life in our Solar System? Study hints at Saturn's moon

When do aging brown dwarfs sweep the clouds away?

EXO WORLDS
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.