. 24/7 Space News .
TECH SPACE
Rare Earth atoms see the light
by Staff Writers
Santa Barbara CA (SPX) Apr 29, 2016


Dirk Bouwmeester.

Tiny units of matter and chemistry that they are, atoms constitute the entire universe. Some rare atoms can store quantum information, an important phenomenon for scientists in their ongoing quest for a quantum Internet.

New research from UC Santa Barbara scientists and their Dutch colleagues exploits a system that has the potential to transfer optical quantum information to a locally stored solid-state quantum format, a requirement of quantum communication. The team's findings appear in the journal Nature Photonics.

"Our research aims at creating a quantum analog of current fiber optic technology in which light is used to transfer classical information - bits with values zero or one - between computers," said author Dirk Bouwmeester, a professor in UCSB's Department of Physics. "The rare earth atoms we're studying can store the superpositions of zero and one used in quantum computation. In addition, the light by which we communicate with these atoms can also store quantum information."

Atoms are each composed of a nucleus typically surrounded by inner shells full of electrons and often have a partially filled outer electron shell. The optical and chemical properties of the atoms are mainly determined by the electrons in the outer shell.

Rare earth atoms such as erbium and ytterbium have the opposite composition: a partially filled inner shell surrounded by filled outer shells. This special configuration is what enables these atoms to store quantum information.

However, the unique composition of rare earth atoms leads to electronic transitions so well shielded from the surrounding atoms that optical interactions are extremely weak. Even when implanted in a host material, these atoms maintain those shielded transitions, which in principle can be addressed optically in order to store and retrieve quantum information.

Bouwmeester collaborated with John Bowers, a professor in UCSB's Department of Electrical and Computer Engineering, and investigators at Leiden University in the Netherlands to strengthen these weak interactions by implanting ytterbium into ultra-high-quality optical storage rings on a silicon chip.

"The presence of the high-quality optical ring resonator - even if no light is injected - changes the fundamental optical properties of the embedded atoms, which leads to an order of magnitude increase in optical interaction strength with the ytterbium," Bouwmeester said. "This increase, known as the Purcell effect, has an intricate dependence on the geometry of the optical light confinement."

The team's findings indicate that new samples currently under development at UCSB can enable optical communication to a single ytterbium atom inside optical circuits on a silicon chip, a phenomenon of significant interest for quantum information storage.

The experiments also explore the way in which the Purcell effect enhances optical interaction with an ensemble of a few hundred rare earth atoms. The grouping itself has interesting collective properties that can also be explored for the storage of quantum information.

Key is an effect called a photon echo, the result of two distinct light pulses, the first of which causes atoms in ytterbium to become partially excited.

"The first light pulse creates a set of atoms we 'talk' to in a specific state and we call that state 'in phase' because all the atoms are created at the same time by this optical pulse," Bouwmeester explained.

"However, the individual atoms have slightly different frequencies because of residual coupling to neighboring atoms, which affects their time evolution and causes decoherence in the system." Decoherence is the inability to keep track of how the system evolves in all its details.

"The trick is that the second light pulse changes the state of the system so that it evolves backwards, causing the atoms to return to the initial phase," he continued. "This makes everything coherent and causes the atoms to collectively emit the light they absorbed from the first pulse."

The strength of the photon echo contains important information about the fundamental properties of the ytterbium in the host material. "By analyzing the strength of these photon echoes, we are learning about the fundamental interactions of ytterbium with its surroundings," Bouwmeester said. "Now we're working on strengthening the Purcell effect by making the storage rings we use smaller and smaller."

According to Bouwmeester, quantum computation needs to be compatible with optical communication for information to be shared and transmitted. "Our ultimate goal is to be able to communicate to a single ytterbium atom; then we can start transferring the quantum state of a single photon to a single ytterbium atom," he added. "Coupling the quantum state of a photon to a quantum solid state is essential for the existence of a quantum Internet."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
ORNL researchers discover new state of water molecule
Oak Ridge TN (SPX) Apr 29, 2016
Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states. In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of water molecules confined in hexagonal ult ... read more


TECH SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

TECH SPACE
Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

Mars' surface revealed in unprecedented detail

Space X's Red Dragons to start Mars exploration in 2018

TECH SPACE
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

TECH SPACE
South China city gears up for satellite tourism

China's long march into space

China's top astronaut goes to "space camp"

China open to Sino-US space cooperation

TECH SPACE
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

TECH SPACE
SpaceX vows to send capsule to Mars by 2018

Russia May Launch Upgraded Proton-M Rocket on May28

India to test Reusable Launch Vehicle in June

Soyuz demonstrates Arianespace mission flexibility

TECH SPACE
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

TECH SPACE
It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures

Engineers develop micro-sized, liquid-metal particles for heat-free soldering

Speedy bridge repair









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.