Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CARBON WORLDS
Rapid and mass production of graphene, using microwaves
by Staff Writers
Ulsan, South Korea (SPX) Dec 14, 2016


Reducing graphene oxide sheets (prGON) into pristine graphene, using 1-to-2 second pulses of microwaves. Image courtesy UNIST. For a larger version of this image please go here.

Graphene, a material that could usher in the next generation of electronic and energy devices, could be closer than ever to mass production, thanks to microwaves. A new study by an international team of researchers from UNIST and Rutgers University has proved that it is now possible to produce high quality graphene, using a microwave oven.

The team reports that this new technique may have solved some of graphene's difficult manufacturing problems. The findings of the research have been published in the September issue of the prestigious journal Science.

This study was jointly conducted by Dr. Jieun Yang, an alumna of UNIST, Prof. Hyeon Suk Shin (School of Natural Science) of UNIST, Prof. Hu Young Jeon (School of Natural Science) of UNIST, Prof. Manish Chhowalla of Rutgers University, and five other researchers from Rutgers University, New Brunswick, NJ, United States.

Graphene comes from a base material of graphite, the cheap material in the 'lead' of pencils. The structure of graphite consists of many flat layers of graphene sheets. One of the most promising ways to achieve large quantities of graphene is to exfoliate graphite into individual graphene sheets by using chemicals.

However, the oxygen exposure during the process may cause some inevitable side reactions, as it can ultimately be very damaging to the individual graphene layers.

Indeed, oxygen distorts the pristine atomic structure of graphene and degrades its properties. Therefore, removing oxygen from graphene oxide to obtain high-quality graphene has been a significant challenge over the past two decades for the scientific community working on graphene.

Dr. Yang and her research team have discovered that baking the exfoliated graphene oxide for just 1-to-2 second pulses of microwaves, can eliminate virtually all of the oxygen from graphene oxides.

"The partially reduced graphene oxides absorb microwave energy, produced inside a microwave oven ," says Dr. Yang, the lead author of the study. She adds, "This not only efficiently eliminates oxygen functional groups from graphene oxides, but is also capable of rearranging defective graphene films."

The results indicate that the new graphene exibits substantially reduced oxygen concentration of 4% much lower than the currently existing graphene with an oxygen content in the range of 15% to 25%.

Prof. Shin states, "Countries around the world, such as South Korea, U.S., England, and China have been investing heavily in research for the affordable, mass commercialization of graphene."

He adds, "The current method for mass-producing high-quality graphene lacks reproducibility, but holds huge untapped market potential. Therefore, securing the fundamental technology for mass production of graphene is an extremely important matter in terms of commercializing future promising industries."

The study's co-author, Prof. Manish Chhowalla is an associate chair in the Department of Materials Science and Engineering in Rutgers' School of Engineering and Director of the Rutgers Institute for Advanced Materials, Devices and Nanotechnology.

Prof. Chhowalla has been working on a joint research project with Prof. Shin and Prof. Jeon of UNIST. Dr. Jieun Yang, a former student of Prof. Shin is now working as a post-doctoral associate in Chhowalla's group at Rutgers University.

Journal Reference: Damien Voiry, Jieun Yang, Jacob Kupferberg, Raymond Fullon, Calvin Lee, Hu Young Jeong, Hyeon Suk Shin, and Manish Chhowalla, "High-quality graphene via microwave reduction of solution-exfoliated graphene oxide", Science, (2016).


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Ulsan National Institute of Science and Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
New synthetic diamond is harder than a jeweler's diamond
Acton, Australia (UPI) Dec 12, 2016
How do you cut through a jeweler's diamond or other hard materials? How about a diamond? Researchers in Australia discovered a rare diamond during lab experimentation - a purer, smaller form of a diamond found at meteorites impact sites. Initial analysis suggests their creation is harder than a jeweler's diamond. "This new diamond is not going to be on any engagement rings," Jod ... read more


CARBON WORLDS
Bill Gates urges Trump to inspire Americans like JFK did

ESA to supply Service Module for first crewed Orion mission

American space legend John Glenn dead at 95

Space gardener Shane Kimbrough enjoys first of multiple harvests

CARBON WORLDS
Russian authorities inspecting crashed spacecraft debris

ULA receives $269m contract modification for launch vehicle production

Airbus Safran Launchers Becomes a 74% Shareholder in Arianespace

Arianespace's Vega scores its eighth success in orbiting Gokturk-1 for Turkey

CARBON WORLDS
ExoMars orbiter images Phobos

Mars One puts back planned colonisation of Red Planet

Opportunity team plot path forward to the 'Gully'

Curiosity Rover Team Examining New Drill Hiatus

CARBON WORLDS
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

CARBON WORLDS
European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

LeoSat and Globalsat Group Sign Strategic Worldwide Agreement

India's Space Program Makes Steady Gains

CARBON WORLDS
Decoding cement's shape promises greener concrete

Deep-frozen helium molecules

Shape matters when light meets atom

NASA awards contract for refueling mission spacecraft

CARBON WORLDS
Meta musings on the origins of life

ALMA measures size of seeds of planets

New telescope chip offers clear view of alien planets

Could There Be Life in Pluto's Ocean?

CARBON WORLDS
New Perspective on How Pluto's "Icy Heart" Came to Be

New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement