. 24/7 Space News .
CYBER WARS
Random numbers: Hard times ahead for hackers
by Staff Writers
Geneva, Switzerland (SPX) Jun 01, 2017


(file illustration only)

Whenever we need to communicate in secret, a cryptographic key is needed. For this key to work, it must consist of numbers chosen at random without any structure - just the opposite of using the birthdate of our favourite pet. But, for a human, it is extremely difficult to choose without creating any bias, even by hitting the keyboard chaotically. To solve this problem, researchers from the University of Geneva (UNIGE), Switzerland, have developed a new random numbers generator based on the principles of quantum physics.

This physical theory, full of phenomena that run counter to our common sense, shows that certain physical events occur perfectly at random, making them impossible to predict. Unlike previous methods, the new system allows the user to verify the reliability of the random numbers it generates in real time. This work, to appear in the scientific journal Physical Review Applied, will greatly complicate the tasks of hackers who can no longer exploit bias resulting from human fallibility or possible imperfections in existing devices.

To generate a good cryptographic key, one must alternate randomly between 0's and 1's, the values of the so-called bits which form the basic unit of information in digital devices like computers. However, when we humans try to generate a sequence of numbers which we believe to be random, it always ends up being partly predictable, as revealed by behavioural studies and statistics.

In addition, apart from having a poor grasp on randomness, the human brain is also much slower than machines, which can output millions of numbers per second. This gives hackers an opportunity to crack passwords, which the user thought to be safe.

Quantum physics as key to security
For the past twenty years, researchers have turned to quantum physics, characterised by its completely random and unpredictable processes, for developing new cryptographic techniques, and in particular the generation of random numbers. "Send a photon (a particle of light) onto a semi-transparent mirror.

Either it gets transmitted through the mirror, or it gets reflected. But it is impossible, even in principle, to predict beforehand which of these two behaviours it will adopt. This is the basic idea behind quantum random number generation" explains Nicolas Brunner, professor at the Department of Applied Physics at the Faculty of Science of UNIGE and responsible for the theoretical aspects of the new research.

Powerful quantum random number generators are today available commercially. However, one limitation of existing devices is that it is impossible for the user to independently verify that the numbers generated are in fact genuinely random and not, for example, composed of digits of p. The user must trust the device (and so its manufacturer) to function correctly, even after years of use. So, it makes sense to ask if current systems could be improved from this point of view.

A new self-testing random number generators
"We wanted to create a device which can be continuously tested to ensure it functions correctly at all times and thus guarantee that the random numbers generated are reliable" says Nicolas Brunner.

To achieve this, the UNIGE physicists have developed a "self-testing" quantum random number generator, which allows the user to verify in real time that the apparatus performs optimally and delivers unbiased random numbers.

"The generator should solve a tasks for which we have calibrated it. If the tasks is solved correctly, the output numbers are guaranteed to be random. If the apparatus does not find the correct solution, randomness is not guaranteed, and the user should then recalibrate the device. This avoids the risk of using numbers with little (or no) randomness for example to generate passwords, which hacker could then crack" professor Hugo Zbinden enthusiastically points out.

He has been responsible for the experimental aspects of the research. Indeed, the new generator allows to measure precisely the quality of the output random numbers. Perfectly random numbers can then be distilled and used for security applications, such as generating passwords which are safe against hacking.

The self-testing quantum random number generator will allow the security of passwords and cryptographic protocols to be increased yet another notch. Here, security is guaranteed by the laws of physics themselves, and not by the hackers' technological limitations. This research, conducted by physicists at the UNIGE allows for a better understanding of quantum randomness as well as its use in information technology.

CYBER WARS
China to launch cybersecurity law despite concerns
Beijing (AFP) May 30, 2017
China will implement a controversial cybersecurity law Thursday despite concerns from foreign firms worried about its impact on their ability to do business in the world's second largest economy. Passed last November, the law is largely aimed at protecting China's networks and private user information at a time when the recent WannaCry ransomware attack showed any country can be vulnerable t ... read more

Related Links
Universite de Geneve
Cyberwar - Internet Security News - Systems and Policy Issues


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CYBER WARS
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

Conch shells may inspire better helmets, body armor

MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

CYBER WARS
Colossal rocket-launching plane rolls toward testing

Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

CYBER WARS
Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

CYBER WARS
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

CYBER WARS
Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

CYBER WARS
Northrop Grumman receives AESA radar contract

Space junk could destroy satellites, hurt economies

New method allows real-time monitoring of irradiated materials

Solving the riddle of the snow globe

CYBER WARS
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Water forms superstructure around DNA, new study shows

CYBER WARS
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.