. 24/7 Space News .
STELLAR CHEMISTRY
Radioactive Elements in Cas A Suggest Neutrino-Driven Explosion
by Staff Writers
Garching, Germany (SPX) Jun 28, 2017


Cassiopeia A - detailed images and captions available here

Stars exploding as supernovae are the main sources of heavy chemical elements in the universe. In particular, radioactive atomic nuclei are synthesized in the hot, innermost regions during the explosion and can thus serve as probes of the unobservable physical processes that initiate the blast.

Using elaborate computer simulations, a team of researchers from the Max Planck Institute for Astrophysics (MPA) and RIKEN in Japan were able to explain the recently measured spatial distributions of radioactive titanium and nickel in Cassiopeia A, a roughly 340-year-old gaseous remnant of a nearby supernova.

The computer models yield strong support for the theoretical idea that such stellar death events can be initiated and powered by neutrinos escaping from the neutron star left behind at the origin of the explosion.

Massive stars end their lives in gigantic explosions, so-called supernovae. Within millions of years of stable evolution, these stars have built up a central core composed of mostly iron. When the core reaches about 1.5 times the mass of the Sun, it collapses under the influence of its own gravity and forms a neutron star. Enormous amounts of energy are released in this catastrophic event, mostly by the emission of neutrinos.

These nearly massless elementary particles are abundantly produced in the interior of the new-born neutron star, where the density is higher than in atomic nuclei and the temperature can reach 500 billion degrees Kelvin.

The physical processes that trigger and drive the explosion have been an unsolved puzzle for more than 50 years. One of the theoretical mechanisms proposed invokes the neutrinos, because they carry away more than hundred times the energy needed for a typical supernova. As the neutrinos leak out from the hot interior of the neutron star, a small fraction of them is absorbed in the surrounding gas.

This heating causes violent motions of the gas, similar to those in a pot of boiling water. When the bubbling of the gas becomes sufficiently powerful, the supernova explosion sets in as if the lid of the pot was blown off.

The outer layers of the dying star are then expelled into circumstellar space, and with them all the chemical elements that the star has assembled by nuclear burning during its life. But also new elements are created in the hot ejecta of the explosion, among them radioactive species such as titanium (44Ti with 22 protons and 22 neutrons) and nickel (56Ni with 28 neutrons and protons each), which decay to stable calcium and iron, respectively. The radioactive energy thus released makes the supernova shine bright for many years.

Because of the wild boiling of the neutrino-heated gas, the blast wave starts out non-spherically and imprints a large-scale asymmetry on the ejected stellar matter and the supernova as a whole (Fig. 1), in agreement with the observation of clumpiness and asymmetries in many supernovae and their gaseous remnants. The initial asymmetry of the explosion has two immediate consequences. On the one hand, the neutron star receives a recoil momentum opposite to the direction of the stronger explosion, where the supernova gas is expelled with more violence.

This effect is similar to the kick a rowing boat receives when a passenger jumps off. On the other hand, the production of heavy elements from silicon to iron, in particular also of titanium and nickel, is more efficient in directions where the explosion is stronger and where more matter is heated to high temperatures.

"We have predicted both effects some years ago by our three-dimensional (3D) simulations of neutrino-driven supernova explosions," says Annop Wongwathanarat, researcher at RIKEN and lead author of the corresponding publication of 2013, when he worked at MPA in collaboration with his co-authors H.-Thomas Janka and Ewald Muller.

"The asymmetry of the radioactive ejecta is more pronounced if the neutron star kick is larger," he adds. Since the radioactive atomic nuclei are synthesized in the innermost regions of the supernova, in very close vicinity to the neutron star, their spatial distribution reflects explosion asymmetries most directly.

New observations of Cassiopeia A (Cas A), the gaseous remnant of a supernova whose light reached the Earth around the year 1680, could now confirm this theoretical prediction. Because of its young age and relative proximity at a distance of just 11,000 light-years, Cas A offers two great advantages for measurements. First, the radioactive decay of 44Ti is still an efficient energy source and releases high-energy X-ray radiation, therefore the presence of this atomic nucleus can be mapped in 3D with high precision.

Second, the velocity of the neutron star is known with both its magnitude and its direction on the plane of the sky. Since the neutron star propagates with an estimated speed of at least 350 kilometres per second, the asymmetry in the spatial distribution of the radioactive elements is expected to be very pronounced. Exactly this is seen in the observations (Fig. 2a).

While the compact remnant speeds toward the lower hemisphere, the biggest and brightest clumps with most of the 44Ti are found in the upper half of the gas remnant. The computer simulation, viewed from a suitably chosen direction, exhibits a striking similarity to the observational image (Fig. 2b). This can also be seen when comparing the 3D visualisation of the simulations in Fig. 3 with the 3D imaging of Cas A.

But not only the spatial distributions of titanium and iron resemble those in Cas A. Also the total amounts of these elements, their expansion velocities, and the velocity of the neutron star are in amazing agreement with those of Cas A. "This ability to reproduce basic properties of the observations impressively confirms that Cas A may be the remnant of a neutrino-driven supernova with its violent gas motions around the nascent neutron star," concludes H.-Thomas Janka.

But more work is needed to finally prove that the explosions of massive stars are indeed powered by energy input from neutrinos. "Cas A is an object of so much interest and importance that we must also understand the spatial distributions of other chemical species such as silicon, argon, neon, and oxygen," remarks Ewald Muller, pointing to the beautiful multi-component morphology of Cas A revealed by 3D imaging. Just having one example is also not enough for making a fully convincing case. Therefore the team has joined a bigger collaboration to test the theoretical predictions for neutrino-driven explosions by a close analysis of a larger sample of young supernova remnants. Step by step the researchers thus hope to collect evidence to be able to settle the long-standing problem of the supernova mechanism.

"Production and Distribution of 44Ti and 56Ni in a Three-Dimensional Supernova Model Resembling Cassiopeia A," Annop Wongwathanarat, Hans-Thomas Janka, Ewald Muller, Else Pllumbi and Shinya Wanajo, 2017 June 10, Astrophysical Journal

STELLAR CHEMISTRY
Star's birth may have triggered another star birth, astronomers say
Charlottesville VA (SPX) Jun 28, 2017
Astronomers using the National Science Foundation's Karl G. Jansky Very Large Array (VLA) have found new evidence suggesting that a jet of fast-moving material ejected from one young star may have triggered the formation of another, younger protostar. "The orientation of the jet, the speed of its material, and the distance all are right for this scenario," said Mayra Osorio, of the Astroph ... read more

Related Links
Max Planck Institute For Astrophysics
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA Statement on National Space Council

Don't look down: glass bottom skywalk thrills in China

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

STELLAR CHEMISTRY
After two delays, SpaceX launches broadband satellite for IntelSat

Aerojet Rocketdyne advocates solar electric propulsion as central element of deep space exploration

Ariane 5 launch proves reliability and flies new fairing

80th consecutive success for Ariane 5 with launch of Hellas Sat, Inmarsat and ISRO

STELLAR CHEMISTRY
Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

No One Under 20 Has Experienced a Day Without NASA at Mars

STELLAR CHEMISTRY
China heavy-lift carrier rocket launch fails: state media

Yuanwang-3 completes ship check mission, ready for Chang'e-5 lunar probe launch

China prepares to launch second heavy-lift carrier rocket

China to launch Long March-5 Y2 in early July

STELLAR CHEMISTRY
SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

Second launch doubles number of Iridium NEXT satellites in orbit to 20

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

STELLAR CHEMISTRY
NIST 'noise thermometry' yields accurate new measurements of boltzmann constant

SES and MDA Announce First Satellite Life Extension Agreement

Space Debris Mitigation Mission Successfully Launched on June 23rd, 2017

True romance in the air at Tokyo virtual reality show

STELLAR CHEMISTRY
Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

Complex Organic Molecules Found On "Space Hamburger"

Why Does Microorganism Prefer Meager Rations Over Rich Ones

NASA diligently tracks microbes inside the International Space Station

STELLAR CHEMISTRY
Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10

Topsy-Turvy Motion Creates Light-Switch Effect at Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.