Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Radio telescopes could spot stars hidden in the galactic center
by Staff Writers
Boston MA (SPX) Sep 23, 2015


In this infrared image from NASA's Spitzer Space Telescope, stellar winds flowing out from the fast-moving star Zeta Ophiuchi are creating a bow shock seen as glowing gossamer threads, which, for this star, are only seen in infrared light. A similar process in the galactic center could allow us to find stars we can't see any other way, according to new research. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

The center of our Milky Way galaxy is a mysterious place. Not only is it thousands of light-years away, it's also cloaked in so much dust that most stars within are rendered invisible. Harvard researchers are proposing a new way to clear the fog and spot stars hiding there. They suggest looking for radio waves coming from supersonic stars.

"There's a lot we don't know about the galactic center, and a lot we want to learn," says lead author Idan Ginsburg of the Harvard-Smithsonian Center for Astrophysics (CfA). "Using this technique, we think we can find stars that no one has seen before."

The long path from the center of our galaxy to Earth is so choked with dust that out of every trillion photons of visible light coming our way, only one photon will reach our telescopes. Radio waves, from a different part of the electromagnetic spectrum, have lower energies and longer wavelengths. They can pass through the dust unimpeded.

On their own, stars aren't bright enough in the radio for us to detect them at such distances. However, if a star is traveling through gas faster than the speed of sound, the situation changes. Material blowing off of the star as a stellar wind can plow into the interstellar gases and create a shock wave. And through a process called synchrotron radiation, electrons accelerated by that shock wave produce radio emission that we could potentially detect.

"In a sense, we're looking for the cosmic equivalent of a sonic boom from an airplane," explains Ginsburg.

To create a shock wave, the star would have to be moving at a speed of thousands of miles per second. This is possible in the galactic center since the stars there are influenced by the strong gravity of a supermassive black hole. When an orbiting star reaches its closest approach to the black hole, it can easily acquire the required speed.

The researchers suggest looking for this effect from one already known star called S2. This star, which is hot and bright enough to be seen in the infrared despite all the dust, will make its closest approach to the Galactic center in late 2017 or early 2018. When it does, radio astronomers can target it to look for radio emission from its shock wave.

"S2 will be our litmus test. If it's seen in the radio, then potentially we can use this method to find smaller and fainter stars - stars that can't be seen any other way," says co-author Avi Loeb of the CfA.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard-Smithsonian Center for Astrophysics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Gaia's first year of scientific observations
Paris (ESA) Aug 26, 2015
Last Friday, 21 August, ESA's billion-star surveyor, Gaia, completed its first year of science observations in its main survey mode. After launch on 19 December 2013 and a six-month long in-orbit commissioning period, the satellite started routine scientific operations on 25 July 2014. Located at the Lagrange point L2, 1.5 million km from Earth, Gaia surveys stars and many other astronomic ... read more


STELLAR CHEMISTRY
NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

China aims to land Chang'e-4 probe on far side of moon

China Plans Lunar Rover For Far Side of Moon

STELLAR CHEMISTRY
Expect Martian Colonies to Build Themselves First

Opportunity Continues Search for Clay Minerals On Mars

Record-breaking astronauts return to Earth

Supervising two rovers from space

STELLAR CHEMISTRY
Making a difference with open source science equipment

NASA, Harmonic Launch First Non-Commercial UHD Channel in NAmerica

Russian cosmonaut back after record 879 days in space

New Life for Old Buddy: Russia Tests Renewed Soyuz-MS Spacecraft

STELLAR CHEMISTRY
China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

STELLAR CHEMISTRY
US astronaut misses fresh air halfway through year-long mission

Andreas Mogensen lands after a busy mission on Space Station

ISS Crew Enjoy Kharcho Soup, Mare's Milk in Orbit

Slam dunk for Andreas in space controlling rover on ground

STELLAR CHEMISTRY
Boeing rejects Aerojet bid for United Launch Alliance

Moscow to Launch Telecom Satellites on Rokot Carrier Rocket

Air Force welcomes Blue Origin to Launch Complex 36

Russia Launches Telecoms Satellite on Board Proton-M Rocket

STELLAR CHEMISTRY
Study: 'Hot Jupiter' exoplanets formed extremely rapidly

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

Europlanet 2020 launches new era of planetary collaboration in Europe

STELLAR CHEMISTRY
Big Iron gets technology boost

Tracking slow nanolight in natural hyperbolic metamaterial slabs

Tokyo videogame show transports fans to new realities

A new type of Au deposits: The decratonic gold deposits




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.