. 24/7 Space News .
CARBON WORLDS
Radical CO2 removal projects could be a risky business
by Staff Writers
Norwich, UK (SPX) Feb 12, 2016


Adding biochar (carbon from partly-burnt biomass) to millions of hectares of soil.

Radical new ways of removing CO2 from the atmosphere could prove to be a risky business - according to an environmental scientist at the University of East Anglia.

Techniques put forward include growing crops to be burned in power stations, large-scale tree plantations, adding biochar to soil, adding nutrients to sea water to boost plankton and seaweed, and using chemicals to extract CO2 from the atmosphere - to be buried deep underground.

But a comment piece published in Nature shows that most, if not all, of these methods pose environmental risks - and that much more research is needed before the wheels are set in motion on global-scale 'climate geoengineering' schemes.

The paper's author, Dr Phil Williamson, employed by the Natural Environment Research Council at UEA's School of Environmental Sciences, said: "In Paris, world leaders agreed to limit the increase in global average temperature above pre-industrial levels to well below 2oC - and preferably below 1.5oC.

"But unless a lot more effort is made to cut carbon emissions, by the UK and other countries, we will have to work out how to safely remove very large amounts of CO2 from the atmosphere.

"The aim is to have a balanced global carbon budget. For that to work, from now on we have to think of matching the addition of greenhouse gases to the atmosphere with their subsequent removal.

"Climate modellers estimate that as much as 600,000 million tonnes of CO2 may need to be extracted from the atmosphere by 2100 to deliver the main goal of the Paris agreement.

"If rapid cuts are not made, then significant CO2 removal will need to begin in less than four years - with up to 20,000 million tonnes removed each year by 2100 to keep the global temperature increase well below 2oC.

"But removal will be expensive, and is currently unproven at the scale needed - so it would be much better to reduce emissions as rapidly as possible."

A variety of schemes have been proposed to remove carbon from the atmosphere, including:

+ Growing bioenergy crops to be burnt in power stations, with the resultant CO2 captured for secure long-term storage underground.

+ Large-scale tree plantations to increase the natural storage of carbon in biomass and forest soil.

+ Restoring saltmarsh and mangrove habitats which have high potential for carbon storage.

+ Adding biochar (carbon from partly-burnt biomass) to millions of hectares of soil.

+ Fertilizing the oceans to increase the growth of plankton and seaweed - capturing CO2 from the atmosphere by their increased photosynthesis.

+ Adding crushed silicate rocks to the Earth's land surface to chemically absorb CO2.

+ Using chemicals to extract CO2 from the air, and storing it deep underground in a liquid state.

+ Treating clouds to produce alkaline rain which would react with and remove atmospheric CO2.

+ A massive increase in the use of straw and timber as building materials to remove carbon from the atmosphere for centuries. Dr Williamson said: "Many CO2 removal techniques have been proposed. But whether any of them could work at the scale needed to deliver the goal of the Paris agreement remains to be seen.

"Crucially, large-scale CO2 removal, by whichever means, will have knock-on effects for ecosystems and biodiversity. There could be benefits, but damage seems more likely.

"For example, the amount of bioenergy crops we would need to grow could use up to 580 million hectares of land - or half of the land area of the US. This would in turn accelerate the loss of forests and natural grassland with impacts for wildlife, whilst also having implications for food security.

"As well as this, very little is known about the effect of future climatic conditions on the yields of bioenergy crops. For example, we don't know what the water requirements of these crops might be in a warmer world.

"It's also important to think about the financial costs of these ideas. For example, adding enough crushed silicate rocks to the soil, over almost half of the Earth's land surface, could cost up to $600 trillion.

"The crucial thing now is that governments and other funding agencies need to invest in new research to investigate the viability and safety of the 'emit now, remove later' approach. Some of the proposed CO2 removal schemes might provide a win-win for climate and the environment; others might be lose-lose. Present climate policy assumes that one or more of them will work at the scale required, yet we just don't know if that is the case."

'Scrutinize CO2 removal methods' is published in Nature on Feb. 10, 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of East Anglia
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene
Berlin, Germany (SPX) Jan 29, 2016
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity. As a result, future electric automobiles might be operated quite well with fuel cells instead of with heavy batteries. But for "cold" combustion of hydrogen and oxygen to function ... read more


CARBON WORLDS
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

CARBON WORLDS
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

CARBON WORLDS
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

CARBON WORLDS
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

CARBON WORLDS
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

CARBON WORLDS
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

CARBON WORLDS
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

CARBON WORLDS
Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

Twisted X-rays unravel the complexity of helical structures

A deep look into a single molecule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.