Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TIME AND SPACE
Radiation from nearby galaxies helped fuel first monster black holes
by Staff Writers
New York NY (SPX) Mar 15, 2017


Columbia University astronomy professor Zoltan Haiman explains the theory that he and his colleagues outline in a new study in Nature Astronomy. Image courtesy Columbia University.

The appearance of supermassive black holes at the dawn of the universe has puzzled astronomers since their discovery more than a decade ago. A supermassive black hole is thought to form over billions of years, but more than two dozen of these behemoths have been sighted within 800 million years of the Big Bang 13.8 billion years ago.

In a new study in the journal Nature Astronomy, a team of researchers from Dublin City University, Columbia University, Georgia Tech, and the University of Helsinki, add evidence to one theory of how these ancient black holes, about a billion times heavier than our sun, may have formed and quickly put on weight.

In computer simulations, the researchers show that a black hole can rapidly grow at the center of its host galaxy if a nearby galaxy emits enough radiation to switch off its capacity to form stars. Thus disabled, the host galaxy grows until its eventual collapse, forming a black hole that feeds on the remaining gas, and later, dust, dying stars, and possibly other black holes, to become super gigantic.

"The collapse of the galaxy and the formation of a million-solar-mass black hole takes 100,000 years - a blip in cosmic time," says study co-author Zoltan Haiman, an astronomy professor at Columbia University. "A few hundred-million years later, it has grown into a billion-solar-mass supermassive black hole. This is much faster than we expected."

In the early universe, stars and galaxies formed as molecular hydrogen cooled and deflated a primordial plasma of hydrogen and helium. This environment would have limited black holes from growing very big as molecular hydrogen turned gas into stars far enough away to escape the black holes' gravitational pull. Astronomers have come up with several ways that supermassive black holes might have overcome this barrier.

In a 2008 study, Haiman and his colleagues hypothesized that radiation from a massive neighboring galaxy could split molecular hydrogen into atomic hydrogen and cause the nascent black hole and its host galaxy to collapse rather than spawn new clusters of stars.

A later study led by Eli Visbal, then a postdoctoral researcher at Columbia, calculated that the nearby galaxy would have to be at least 100 million times more massive than our sun to emit enough radiation to stop star-formation. Though relatively rare, enough galaxies of this size exist in the early universe to explain the supermassive black holes observed so far.

The current study, led by John Regan, a postdoctoral researcher at Ireland's Dublin City University, modeled the process using software developed by Columbia's Greg Bryan, and includes the effects of gravity, fluid dynamics, chemistry and radiation.

After several days of crunching the numbers on a supercomputer, the researchers found that the neighboring galaxy could be smaller and closer than previously estimated. "The nearby galaxy can't be too close, or too far away, and like the Goldilocks principle, too hot or too cold," said study coauthor John Wise, an associate astrophysics professor at Georgia Tech.

The current study, led by John Regan, a postdoctoral researcher at Ireland's Dublin City University, attempted to model the process. Using simulations to measure how radiation from one galaxy influenced black hole formation in the other, the researchers found that the neighboring galaxy could be smaller and closer than previously estimated.

"The nearby galaxy can't be too close, or too far away, and like the Goldilocks principle, too hot or too cold," said study coauthor John Wise, an associate astrophysics professor at Georgia Tech.

Though massive black holes are found at the center of most galaxies in the mature universe, including our own Milky Way, they are far less common in the infant universe. The earliest supermassive black holes were first sighted in 2001 through a telescope at New Mexico's Apache Point Observatory as part of the Sloan Digital Sky Survey.

The researchers hope to test their theory when NASA's James Webb Space Telescope, the successor to Hubble, goes online next year and beams back images from the early universe.

Other models of how these ancient behemoths evolved, including one in which black holes grow by merging with millions of smaller black holes and stars, await further testing. "Understanding how supermassive black holes form tells us how galaxies, including our own, form and evolve, and ultimately, tells us more about the universe in which we live," said Regan, at Dublin City University.

The study is titled, "Rapid formation of massive black holes in close proximity to embryonic protogalaxies." The other authors are Eli Visbal, now a postdoctoral researcher at the Simons Foundation Flatiron Institute, Peter Johansson, an astrophysics professor at the University of Helsinki, and Greg Bryan, an astronomy professor at Columbia and the Flatiron Institute.

TIME AND SPACE
Hubble dates black hole's last big meal
Greenbelt MD (SPX) Mar 13, 2017
For the supermassive black hole at the center of our Milky Way galaxy, it's been a long time between dinners. NASA's Hubble Space Telescope has found that the black hole ate its last big meal about 6 million years ago, when it consumed a large clump of infalling gas. After the meal, the engorged black hole burped out a colossal bubble of gas weighing the equivalent of millions of suns, which now ... read more

Related Links
Columbia University
Understanding Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Visions of the Future: Planetary Exploration Through 2050

Campaign Tests Parachutes Designed to Provide Astronauts a Soft Landing

Keeping Liquids Off the Wall

International space docking standard updated

TIME AND SPACE
Kennedy's Multi-User Spaceport Streamlines Commercial Launches

Designing new rocket engines that don't blow up

Space squadron supports record-breaking satellites launch

Europe launches fourth Earth monitoring satellite

TIME AND SPACE
Opportunity Driving South to Gully

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

Paleolake deposits on Mars might look like sediments in Indonesia

TIME AND SPACE
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

TIME AND SPACE
UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

ISRO Makes More Space for Private Sector Participation in Satellite Making

Kuwait Space Agency - a pipedream or reality

TIME AND SPACE
MIPT physicists predict the existence of unusual optical composites

Orbiting in sunshine

New application of the selective laser melting method

Scientists develop new surface finishing for 3D-printing

TIME AND SPACE
Light From An Ultra-Cool Neighbor

Could fast radio bursts be powering alien probes

Enzyme-free krebs cycle may have been key step in origin of life on Earth

Kepler Provides Another Peek at Ultra-cool Neighbor

TIME AND SPACE
NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement