. 24/7 Space News .
OUTER PLANETS
Radiation Maps of Jupiter's Moon Europa: Key to Future Missions
by Gretchen McCartney for JPL News
Pasadena CA (JPL) Jul 24, 2018

Radiation from Jupiter can destroy molecules on Europa's surface. Material from Europa's ocean that ends up on the surface will be bombarded by radiation, possibly destroying any biosignatures, or chemical signs that could imply the presence of life.

New comprehensive mapping of the radiation pummeling Jupiter's icy moon Europa reveals where scientists should look - and how deep they'll have to go - when searching for signs of habitability and biosignatures.

Since NASA's Galileo mission yielded strong evidence of a global ocean underneath Europa's icy shell in the 1990s, scientists have considered that moon one of the most promising places in our solar system to look for ingredients to support life. There's even evidence that the salty water sloshing around the moon's interior makes its way to the surface.

By studying this material from the interior, scientists developing future missions hope to learn more about the possible habitability of Europa's ocean. However, Europa's surface is bombarded by a constant and intense blast of radiation from Jupiter. This radiation can destroy or alter material transported up to the surface, making it more difficult for scientists to know if it actually represents conditions in Europa's ocean.

As scientists plan for upcoming exploration of Europa, they have grappled with many unknowns: Where is the radiation most intense? How deep do the energetic particles go? How does radiation affect what's on the surface and beneath - including potential chemical signs, or biosignatures, that could imply the presence of life.

A new scientific study, published in Nature Astronomy, represents the most complete modeling and mapping of radiation at Europa and offers key pieces to the puzzle. The lead author is Tom Nordheim, research scientist at NASA's Jet Propulsion Laboratory, Pasadena, California.

"If we want to understand what's going on at the surface of Europa and how that links to the ocean underneath, we need to understand the radiation," Nordheim said. "When we examine materials that have come up from the subsurface, what are we looking at? Does this tell us what is in the ocean, or is this what happened to the materials after they have been radiated?"

Using data from Galileo's flybys of Europa two decades ago and electron measurements from NASA's Voyager 1 spacecraft, Nordheim and his team looked closely at the electrons blasting the moon's surface. They found that the radiation doses vary by location. The harshest radiation is concentrated in zones around the equator, and the radiation lessens closer to the poles.

Mapped out, the harsh radiation zones appear as oval-shaped regions, connected at the narrow ends, that cover more than half of the moon.

"This is the first prediction of radiation levels at each point on Europa's surface and is important information for future Europa missions," said Chris Paranicas, a co-author from the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.

Now scientists know where to find regions least altered by radiation, which could be crucial information for the JPL-led Europa Clipper, NASA's mission to orbit Jupiter and monitor Europa with about 45 close flybys. The spacecraft may launch as early as 2022 and will carry cameras, spectrometers, plasma and radar instruments to investigate the composition of the moon's surface, its ocean, and material that has been ejected from the surface.

In his new paper, Nordheim didn't stop with a two-dimensional map. He went deeper, gauging how far below the surface the radiation penetrates, and building 3D models of the most intense radiation on Europa. The results tell us how deep scientists need to dig or drill, during a potential future Europa lander mission, to find any biosignatures that might be preserved.

The answer varies, from 4 to 8 inches (10 to 20 centimeters) in the highest-radiation zones - down to less than 0.4 inches (1 centimeter) deep in regions of Europa at middle- and high-latitudes, toward the moon's poles.

To reach that conclusion, Nordheim tested the effect of radiation on amino acids, basic building blocks for proteins, to figure out how Europa's radiation would affect potential biosignatures. Amino acids are among the simplest molecules that qualify as a potential biosignature, the paper notes.

"The radiation that bombards Europa's surface leaves a fingerprint," said Kevin Hand, co-author of the new research and project scientist for the potential Europa Lander mission. "If we know what that fingerprint looks like, we can better understand the nature of any organics and possible biosignatures that might be detected with future missions, be they spacecraft that fly by or land on Europa.

Europa Clipper's mission team is examining possible orbit paths, and proposed routes pass over many regions of Europa that experience lower levels of radiation, Hand said. "That's good news for looking at potentially fresh ocean material that has not been heavily modified by the fingerprint of radiation."


Related Links
Europa Clipper
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Dozen new Jupiter moons declared
Washington DC (SPX) Jul 17, 2018
Twelve new moons orbiting Jupiter have been found - 11 "normal" outer moons, and one that they're calling an "oddball." This brings Jupiter's total number of known moons to a whopping 79 - the most of any planet in our solar system. A team led by Carnegie's Scott S. Sheppard first spotted the moons in the spring of 2017 while they were looking for very distant solar system objects as part of the hunt for a possible massive planet far beyond Pluto. In 2014, this same team found the object wit ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Team Powers On AA-2 Orion Module, Preps for Flight Test Simulation

A Two-Dimensional Space Program

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

OUTER PLANETS
Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

Pentagon Requests Funds for First Offensive Hypersonic Weapons

Hot firing proves solid rocket motor for Ariane 6 and Vega-C

OUTER PLANETS
'Storm Chasers' on Mars Searching for Dusty Secrets

Martian Atmosphere Behaves as One

Undergrad Mines Data from Curiosity Rover in Search for Life

Name Europe's robot to roam and search for life on Mars

OUTER PLANETS
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

OUTER PLANETS
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

OUTER PLANETS
Chemical Gardens in Space

What's your idea to 3D print on the Moon

Why won't Parker Solar Probe melt

Future electronic components to be printed like newspapers

OUTER PLANETS
X-ray Data May Be First Evidence of a Star Devouring a Planet

Origami-inspired device helps marine biologists study aliens

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Finding a Planet with a 10-Year Orbit in a Few Months

OUTER PLANETS
Dozen new Jupiter moons declared

The True Colors of Pluto and Charon

NASA Juno data indicate another possible volcano on Jupiter moon Io

First Global Maps of Pluto and Charon from New Horizons Published









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.