. 24/7 Space News .
TIME AND SPACE
Quantum transfer at the push of a button
by Staff Writers
Zurich, Switzerland (SPX) Jun 19, 2018

illustration only

Data transmission is the backbone of the modern information society, on both the large and small scale. On the internet, data are exchanged between computers all over the world, most often using fibre optic cables. Inside a computer, on the other hand, information has to be shuttled back and forth between different processors.

A reliable exchange of data is also of great importance for the new quantum information technologies that are currently being developed - but at the same time it is also fiendishly difficult. At the ETH in Zurich, a team of physicists led by Andreas Wallraff of the Laboratory for Solid State Physics has now succeeded in transmitting quantum information, at the push of button and with high fidelity, between two quantum bits roughly a metre apart. Their results are published in the scientific journal Nature this week.

Flying quantum bits
The main peculiarity of quantum information technologies, such as quantum computers and quantum cryptography, is the use of quantum bits or "qubits" as the elementary unit of information. Differently from classical bits, qubits cannot just have the value 0 or 1, but also take on so-called superposition states.

On the one hand, this results in the possibility to build extremely powerful computers that make use of those superposition states to perform calculations much more efficiently and faster than classical computers. On the other hand, those states are also very sensitive and cannot be transmitted simply using conventional techniques.

The problem is that the state of a stationary qubit first has to be transformed into a so-called "flying" qubit, for instance a photon, and then back into another stationary qubit. A few years ago researchers were able to transmit the quantum state of an atom in this way. Wallraff and his co-workers have now succeeded in realizing such a transmission also from one superconducting solid-state qubit to another one some distance away.

To do so, the physicists connected two superconducting qubits using a coaxial cable of the kind that is also used to connect to antenna terminals. The quantum state of the first qubit, which is defined by the number of superconducting electron pairs (also known as Cooper pairs) contained in it, was first transferred to a microwave photon of a resonator using very precisely controlled microwave pulses.

From that resonator the photon could then fly through the coaxial cable to a second resonator, inside of which microwave pulses, once more, transferred its quantum state onto the the second qubit. Similar experiments were recently carried out at Yale University.

Deterministic rather than probabilistic
"The important point of our method is that the transmission of the quantum state is deterministic, which means that it works at the push of a button", Philipp Kurpiers, a PhD student in Wallraff's lab, emphasizes. In some earlier experiments a transfer of quantum states could already be realized, but that transmission was probabilistic: sometimes it worked, but most of the time it didn't.

A successful transmission could, for instance, be signalled by a "heralding photon". Whenever the transmission hadn't worked, one simply tried again. In that way, the effective quantum transmission rate was, of course, strongly reduced. For practical applications, therefore, deterministic methods such as the one now demonstrated at ETH are clearly advantageous.

"Our transmission rate for quantum states is among the highest ever realized, and at 80% our transmission fidelity is very good in the first realization of the protocol", says Andreas Wallraff. Using their technique, the researchers were also able to create a quantum mechanical entanglement between the qubits as many as 50,000 times per second.

The transmission procedure itself took less than a millionth of a second, which means that there is quite a bit of room for improvement in the transmission rate. Quantum mechanical entanglement creates an intimate link between two quantum objects even across large distances, a feature that is used for cryptography or quantum teleportation.

Quantum transfer for quantum computers
As a next step, the researchers want to try to use two qubits each as transmitter and receiver, which makes entanglement swapping between the qubit pairs possible. Such a process is useful for larger quantum computers, which are supposed to be built in the next few years. So far, they only consist of a handful of qubits, but when trying to build larger computers, already for a few hundred qubits one will have to worry about how to connect them most effectively in order to exploit the advantages of a quantum computer in the best possible way.

Much like clusters of single computers used today, quantum computer modules could then be connected together using Wallraff's technique. The transmission distance, which is currently about a metre, could certainly be increased. Wallraff and his colleagues recently demonstrated that an extremely cold, and thus superconducting, cable could transmit photons over distances of several tens of metres with very little loss. Wiring together a quantum computing centre, therefore, seems to be quite feasible.

Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathe Y, Akin A, Storz S, Besse J-C, Gasparinetti S, Blais B, Wallraff A. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature (2018), published online 13th June,


Related Links
ETH Zurich
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Evidence for a new property of quantum matter revealed
Baltimore MD (SPX) Jun 19, 2018
A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports. The team proved that a particular quantum material can demonstrate electrical dipole fluctuations - irregular oscillations of tiny charged poles on the material - even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit. The material, first synthesized 20 years ago, is called k-(BEDT-TTF)2Hg(SCN)2 Br. It is derived from organic compound ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronaut Sally Ride's legacy of encouraging young women to embrace science and engineering

Space tourism not far off, rocket maker says

Space Station Roulette

Peggy Whitson, NASA's most experienced astronaut, retires

TIME AND SPACE
S7 space mulls restoring production of heavy rocket engines in Russia

Russia to deliver US new rocket engines

Arianegroup tests innovative technology for next generation upper stage rocket engine

ESA Council commits to Ariane 6 and transition from Ariane 5

TIME AND SPACE
Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

NASA spacecraft studying massive Martian dust storm

Opportunity rover sends transmission amid Martian dust storm

TIME AND SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TIME AND SPACE
GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

Forget Galileo - UK space sector should look to young stars instead

US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

TIME AND SPACE
Physicists discover how to create the thinnest liquid films ever

Combining experts and automation in 3D printing

Reaktor Space Lab and VTT investigate a new frequency band for telecommunications satellites

The right chemistry, fast: employing AI and Automation to map out and make molecules

TIME AND SPACE
Astronomers identify 121 giant planets likely to host habitable moons

Hawking plea 'to save planet' beamed to black hole

Study could help humans colonise Mars and hunt for alien life

Chandra Scouts Nearest Star System for Possible Hazards

TIME AND SPACE
A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons

Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.