Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum physics enables revolutionary imaging method
by Staff Writers
Vienna, Austria (SPX) Sep 01, 2014


A new quantum imaging technique generates images with photons that have never touched to object -- in this case a sketch of a cat. This alludes to the famous Schrodinger cat paradox, in which a cat inside a closed box is said to be simultaneously dead and alive as long there is no information outside the box to rule out one option over the other. Similarly, the new imaging technique relies on a lack of information regarding where the photons are created and which path they take. Image courtesy Patricia Enigl, IQOQI.

Researchers from the Institute for Quantum Optics and Quantum Information (IQOQI), the Vienna Center for Quantum Science and Technology (VCQ), and the University of Vienna have developed a fundamentally new quantum imaging technique with strikingly counterintuitive features.

For the first time, an image has been obtained without ever detecting the light that was used to illuminate the imaged object, while the light revealing the image never touches the imaged object.

In general, to obtain an image of an object one has to illuminate it with a light beam and use a camera to sense the light that is either scattered or transmitted through that object.

The type of light used to shine onto the object depends on the properties that one would like to image. Unfortunately, in many practical situations the ideal type of light for the illumination of the object is one for which cameras do not exist.

The experiment published in Nature this week for the first time breaks this seemingly self-evident limitation.

The object (e.g. the contour of a cat) is illuminated with light that remains undetected. Moreover, the light that forms an image of the cat on the camera never interacts with it.

In order to realise their experiment, the scientists use so-called "entangled" pairs of photons. These pairs of photons - which are like interlinked twins - are created when a laser interacts with a non-linear crystal.

In the experiment, the laser illuminates two separate crystals, creating one pair of twin photons (consisting of one infrared photon and a "sister" red photon) in either crystal. The object is placed in between the two crystals.

The arrangement is such that if a photon pair is created in the first crystal, only the infrared photon passes through the imaged object. Its path then goes through the second crystal where it fully combines with any infrared photons that would be created there.

With this crucial step, there is now, in principle, no possibility to find out which crystal actually created the photon pair.

Moreover, there is now no information in the infrared photon about the object. However, due to the quantum correlations of the entangled pairs the information about the object is now contained in the red photons - although they never touched the object. Bringing together both paths of the red photons (from the first and the second crystal) creates bright and dark patterns, which form the exact image of the object.

Stunningly, all of the infrared photons (the only light that illuminated the object) are discarded; the picture is obtained by only detecting the red photons that never interacted with the object.

The camera used in the experiment is even blind to the infrared photons that have interacted with the object. In fact, very low light infrared cameras are essentially unavailable on the commercial market.

The researchers are confident that their new imaging concept is very versatile and could even enable imaging in the important mid-infrared region. It could find applications where low light imaging is crucial, in fields such as biological or medical imaging.

.


Related Links
University of Vienna
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Technique uses fraction of measurements to find quantum wave functions
Rochester NY (SPX) Sep 01, 2014
The result of every possible measurement on a quantum system is coded in its wave function, which until recently could be found only by taking many different measurements of a system and estimating a wave function that best fit all those measurements. Just two years ago, with the advent of a technique called direct measurement, scientists discovered they could reliably determine a system's ... read more


TIME AND SPACE
China Aims for the Moon, Plans to Bring Back Lunar Soil

Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

TIME AND SPACE
Opportunity Flash-Memory Reformat Planned

Memory Reformat Planned for Opportunity Mars Rover

Scientist uncovers red planet's climate history in unique meteorite

A Salty, Martian Meteorite Offers Clues to Habitability

TIME AND SPACE
Aurora Season Has Started

Russian, US Scientists to Prepare Astronauts for Extreme Situations in Space

Russia's Space Geckos Die Due to Technical Glitch Two Days Before Landing

US to Stop Using Soyuz Spacecraft, Invest in Domestic Private Space Industry

TIME AND SPACE
Same-beam VLBI Tech monitors Chang'E-3 movement on moon

China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

TIME AND SPACE
Science and Departure Preps for Station Crew

3-D Printer Could Turn Space Station into 'Machine Shop'

Russia May Continue ISS Work Beyond 2020

NASA Awaits Boeing's Completion of Soyuz Replacement

TIME AND SPACE
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

TIME AND SPACE
Orion Rocks! Pebble-Size Particles May Jump-Start Planet Formation

Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

TIME AND SPACE
Experiments explain why some liquids are 'fragile' and others are 'strong'

The fluorescent fingerprint of plastics

Atoms to Product: Aiming to Make Nanoscale Benefits Life-sized

Argonne scientists pioneer strategy for creating new materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.