Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Quantum model reveals surface structure of water
by Staff Writers
London, UK (SPX) Apr 24, 2015


This shows the heterogeneous electronic density created by the diverse molecular orientations at the liquid-vapor interface of water. Image courtesy NPL/University of Edinburgh. For a larger version of this image please go here.

The National Physical Laboratory (NPL), the UK's National Measurement Institute in collaboration with IBM and the University of Edinburgh, has used a new quantum model to reveal the molecular structure of water's liquid surface.

The liquid-vapour interface of water is one of the most common of all heterogeneous (or non-uniform) environments. Understanding its molecular structure will provide insight into complex biochemical interactions underpinning many biological processes. But experimental measurements of the molecular structure of water's surface are challenging, and currently competing models predict various different arrangements.

NPL has been working with IBM and the University of Edinburgh to make materials simulation more predictive and intuitive, by developing a new class of materials model based on quantum mechanical effects.

The model is based on a single charged particle, the quantum Drude oscillator (QDO), which mimics the way the electrons of a real water molecule fluctuate and respond to their environment. This simplified representation retains interactions not normally accessible in classical models and accurately captures the properties of liquid water.

In new research, published in a featured article in the journal Physical Chemistry Chemical Physics, the team used the QDO model to determine the molecular structure of water's liquid surface. The results provide new insight into the hydrogen-bonding topology at the interface, which is responsible for the unusually high surface tension of water.

This is the first time the QDO model of water has been applied to the liquid-vapour interface. The results enabled the researchers to identify the intrinsic asymmetry of hydrogen bonds as the mechanism responsible for the surface's molecular orientation. The model was also capable of predicting the temperature dependence of the surface tension with remarkable accuracy - to within 1 % of experimental values.

Coupled with earlier work on bulk water, this result demonstrates the exceptional transferability of the QDO approach and offers a promising new platform for molecular exploration of condensed matter.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Physical Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
MIT physicists develop new tabletop particle detector
Boston (UPI) Apr 22, 2015
The Large Hadron Collider is the largest particle collider in the world. Its circular tunnel boasts a 17-mile circumference to accelerate particles toward collision inside a detector. The latest particle detector from the labs of MIT is not much bigger than a coffee cup. The tabletop particle detector isn't capable of smashing atoms at high speeds, of course, but it can detect electrons ... read more


TIME AND SPACE
Japan to land first unmanned spacecraft on moon in 2018

Russia Planning Manned Flight Around Moon in 2025

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

TIME AND SPACE
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

TIME AND SPACE
Ramping Up For Johnson's Chamber A Test

Space icon reflects on origins of space program

Russia vows to put Russian cosmonauts on Moon no later than 2030

NASA Offers Study Volunteers Big Bucks to Stay in Bed

TIME AND SPACE
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TIME AND SPACE
Political Tensions Between Russia, US Irrelevant Aboard ISS

Liquid crystal bubbles experiment arrives at International Space Station

Russia, US to go ahead with International Space Station

Sixth SpaceX Delivery of Station Research With a Side of Caffeine

TIME AND SPACE
SpaceX: We Know Why Our Rocket Crashed

SpaceX Dragon cargo ship arrives at space station

Video shows SpaceX rocket booster crash land on floating target

Russia Should Consider Launching Super-Heavy Rockets From Vostochny

TIME AND SPACE
Can we find an ancient Earth-like planet with a dying biosphere?

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

TIME AND SPACE
New 'space trash' laser may tidy up Earth's orbit

Technique could slash energy used to produce many plastics

Tethers Unlimited to recycle ISS plastic waste into 3D printer filament

ADS NEWTON products enable agile satellite missions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.