Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Quantum mechanics explored in new study
by Staff Writers
Pasadena CA (JPL) Feb 17, 2016

This cartoon helps explain the idea of "entangled particles." Alice and Bob represent photon detectors, which NASA's Jet Propulsion Laboratory and the National Institute of Standards and Technology developed. Credit: NASA/JPL-Caltech - Larger image

Here's a love story at the smallest scales imaginable: particles of light. It is possible to have particles that are so intimately linked that a change to one affects the other, even when they are separated at a distance.

This idea, called "entanglement," is part of the branch of physics called quantum mechanics, a description of the way the world works at the level of atoms and particles that are even smaller. Quantum mechanics says that at these very tiny scales, some properties of particles are based entirely on probability. In other words, nothing is certain until it happens.

Albert Einstein did not entirely believe that the laws of quantum mechanics described reality. He and others postulated that there must be some hidden variables at work, which would allow quantum systems to be predictable.

In 1964, however, John Bell published the idea that any model of physical reality with such hidden variables also must allow for the instantaneous influence of one particle on another. While Einstein proved that information cannot travel faster than the speed of light, particles can still affect each other when they are far apart according to Bell.

Scientists consider Bell's theorem an important foundation for modern physics. While many experiments have taken place to try to prove his theorem, no one was able to run a full, proper test of the experiment Bell would have needed until recently. In 2015, three separate studies were published on this topic, all consistent with the predictions of quantum mechanics and entanglement.

"What's exciting is that in some sense, we're doing experimental philosophy," said Krister Shalm, physicist with the National Institute of Standards and Technology (NIST), Boulder, Colorado. Shalm is lead author on one of the 2015 studies testing Bell's theorem.

"Humans have always had certain expectations of how the world works, and when quantum mechanics came along, it seemed to behave differently."

How 'Alice and Bob' Test Quantum Mechanics
The paper by Shalm, Marsili and colleagues was published in the journal Physical Review Letters, with the mind-bending title "Strong Loophole-Free Test of Local Realism."

"Our paper and the other two published last year show that Bell was right: any model of the world that contains hidden variables must also allow for entangled particles to influence one another at a distance," said Francesco Marsili of NASA's Jet Propulsion Laboratory in Pasadena, California, who collaborated with Shalm.

An analogy helps to understand the experiment, which was conducted at a NIST laboratory in Boulder:

Imagine that A and B are entangled photons. A is sent to Alice and B is sent to Bob, who are located 607 feet (185 meters) apart.

Alice and Bob poke and prod at their photons in all kinds of ways to get a sense of their properties. Without talking to each other, they then each randomly decide how to measure their photons, using random number generators to guide their decisions. When Alice and Bob compare notes, they are surprised to find that the results of their independent experiments are correlated. In other words, even at a distance, measuring one photon of the entangled pair affects the properties of the other photon.

"It's as if Alice and Bob try to tear the two photons apart, but their love still persists," Shalm said. In other words, the entangled photons behave as if they are two parts of a single system, even when separated in space.

Alice and Bob - representing actual photon detectors - then repeat this with many other pairs of entangled photons, and the phenomenon persists.

In reality, the photon detectors are not people, but superconducting nanowire single photon detectors (SNSPDs). SNSPDs are metal strips that are cooled until they become "superconducting," meaning they lose their electric resistance. A photon hitting this strip causes it to turn into a normal metal again momentarily, so the resistance of the strip jumps from zero to a finite value. This change in resistance allows the researchers to record the event.

To make this experiment happen in a laboratory, the big challenge is to avoid losing photons as they get sent to the Alice and Bob detectors through an optical fiber. JPL and NIST developed SNSPDs with worldrecord performance, demonstrating more than 90 percent efficiency and low "jitter," or uncertainty on the time of arrival of a photon. This experiment would not have been possible without SNSPDs.

Why This is Useful
The design of this experiment could potentially be used in cryptography - making information and communications secure - as it involves generating random numbers.

"The same experiment that tells us something deep about how the world is constructed also can be used for these applications that require you to keep your information safe," Shalm said.

Cryptography isn't the only application of this research. Detectors similar to those used for the experiment, which were built by JPL and NIST, could eventually also be used for deep-space optical communication. With a high efficiency and low uncertainty about the time of signal arrival, these detectors are well-suited for transmitting information with pulses of light in the optical spectrum.

"Right now we have the Deep Space Network to communicate with spacecraft around the solar system, which encodes information in radio signals. With optical communications, we could increase the data rate of that network 10- to 100-fold," Marsili said.

Deep space optical communication using technology similar to the detectors in Marsili's experiment was demonstrated with NASA's Lunar Atmosphere Dust and Environment Explorer (LADEE) mission, which orbited the moon from October 2013 to April 2014. A technology mission called the Lunar Laser Communication Demonstration, with components on LADEE and on the ground, downlinked data encoded in laser pulses, and made use of ground receivers based on SNSPDs.

NASA's Space Technology Mission Directorate is working on the Laser Communications Relay Demonstration (LCRD) mission. The mission proposes to revolutionize the way we send and receive data, video and other information, using lasers to encode and transmit data at rates 10 to 100 times faster than today's fastest radio-frequency systems, using significantly less mass and power.

"Information can never travel faster than the speed of light - Einstein was right about that. But through optical communications research, we can increase the amount of information we send back from space," Marsili said. "The fact that the detectors from our experiment have this application creates great synergy between the two endeavors."

And so, what began as the study of "love" between particles is contributing to innovations in communications between space and Earth. "Love makes the world go 'round," and it may, in a sense, help us learn about other worlds.


Related Links
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
The universe's primordial soup flowing at CERN
Copenhagen, Denmark (SPX) Feb 10, 2016
Researchers have recreated the universe's primordial soup in miniature format by colliding lead atoms with extremely high energy in the 27 km long particle accelerator, the LHC at CERN in Geneva. The primordial soup is a so-called quark-gluon plasma and researchers from the Niels Bohr Institute, among others, have measured its liquid properties with great accuracy at the LHC's top energy. The re ... read more

Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Becoming a Martian

Site of Martian lakes linked to ancient habitable environment

Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Orion Crew Module processing begins for first mission

Mars or the Moon

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

SES-9 Launch Targeting Late February

Spaceflight Awarded First GSA Schedule Contract for Satellite Launch Services

Arianespace to launch two ViaSat high capacity satellites

SpaceX Conducts Hover Tests

Earth-like planets have Earth-like interiors

The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Some 5,000 years ago, silver mining on the shores of the Aegean Sea

Chemical cages: New technique advances synthetic biology

Why not recycled concrete

UBC researchers discover new glass technology

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.