Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TIME AND SPACE
Quantum-emitting answer might lie in the solution
by Staff Writers
Washington DC (SPX) Nov 30, 2017


The coupled device between the photonic crystal nanobeam cavity and perovskite nanocrystals, which overlays with the cavity mode profile. The arrows indicate that the excitation and generated signal are coupled in and out of the device vertically.

Tapping into the quantum properties of photons for optoelectronics requires highly efficient light sources. Lead trihalide perovskite nanocrystals exhibit a number of properties that make them promising candidates as light sources. Although coupling quantum emitters with nanophotonic cavities can significantly boost efficiency, this approach has not been explored with these nanocrystals.

Now, a group of researchers at the University of Maryland and ETH Zurich has demonstrated a simple approach for coupling solution-synthesized cesium lead tribromide (CsPbBr3) perovskite nanocrystals to silicon nitride (SiN) photonic cavities. The resulting room temperature light emission is enhanced by an order of magnitude above what perovskites can emit alone. Doctoral candidate Zhili Yang and others report their results this week in Applied Physics Letters, from AIP Publishing.

"Our work shows that it is possible to enhance the spontaneous emission of colloidal perovskite nanocrystals using a photonic cavity," Yang said. "Our results provide a path toward compact on-chip light sources with reduced energy consumption and size."

To couple the nanocrystals to the photonic cavity, the group drop cast perovskite nanocrystals in toluene solution onto the SiN cavity. They then excited the device with a pulsed laser, leading to photon emission from the nanocrystals.

The use of solutions to make colloidal quantum emitters contrasts with the fabrication of epitaxial materials, a widely used process that involves growing crystalline overlayers on an existing substrate. Instead, Yang said, one can directly deposit colloidal nanocrystals using solvents more easily on different kinds of wafers.

Similar perovskite materials are already promising in photovoltaic settings, and they also exhibit a number of properties that make them promising candidates for light-emitting devices.

"The nanocrystals have a low density of defects that can trap carriers [electrons and holes], producing a very low nonradiative decay rate and a high photoluminescence efficiency at room temperature," Yang said.

Attempts to emit light with epitaxial materials have generally fallen short of efficiently covering the visible light spectrum, with the wavelength range in the blue-green being particularly problematic. The device that the team demonstrated exhibited emission centered at 510 nanometers in the green.

"The large challenge with this method, however, is that you have to find a very optimized concentration [density] of the crystals on the surface of the cavity," Yang said. "It can't be too condensed or else it will be detrimental to the cavity and might lead to nonconformity."

The coupled nanocrystals and nanocavity boasted a tenfold improvement in emission brightness compared to the emitters alone. It resulted in a spontaneous emission rate enhancement of 2.9, reflecting a nearly threefold increase in the photon emitting efficiency within the cavity compared to perovskites on unpatterned surfaces.

The results are a boon to optoelectronics, Yang said, a field that leverages the quantum effects of photons on electronic materials to help build optical circuits that won't suffer from some of the inefficiencies of purely electronic devices, such as heating. Optoelectronic devices also enjoy faster processing speeds and broader signal bandwidths, and may one day be used in quantum computing and quantum communication networks.

Research Report: "Spontaneous emission enhancement of colloidal perovskite nanocrystals"

TIME AND SPACE
Studying heat transfer with computers is easier now
Trieste, Italy (SPX) Nov 30, 2017
"Our goal? To radically innovate numerical simulations in the field of thermal transport to take on the great science and technology issues in which this phenomenon is so central. This new study, which has designed a new method with which to analyse heat transfer data more efficiently and accurately, is an important step in this direction". This is how Stefano Baroni describes this new res ... read more

Related Links
American Institute of Physics
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA Establishes Advisory Group for National Space Council

Spaceships and Politics: Sputnik Talks to Cosmonaut Sergei Krikalev

Space Policy Directive calls for human expansion across the solar system

Tech titans ramp up tools to win over children

TIME AND SPACE
Nozzle Assemblies Complete for Exploration Mission-1 Solid Rocket Boosters

Rocket Lab to launch rocket from New Zealand

Ariane 5 rocket takes off with European GPS satellites

Russian space agency blames satellite loss on programming error

TIME AND SPACE
Designing future human space exploration on Hawaii's lava fields

Space program should focus on Mars, says editor of New Space

NASA's oldest Mars rover survives another harsh winter

EU exempts fuel for ExoMars mission from Russian sanctions

TIME AND SPACE
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

TIME AND SPACE
mu Space becomes first Thai startup to acquire satellite license

New business incubators will help space industry grow

Regulation and compliance for nontraditional space missions

Orbital ATK purchase by Northrop Grumman approved by shareholders

TIME AND SPACE
Nature's toughest substances decoded

Russia says 'satellite' could have caused radioactive pollution

NASA Selects Three Companies to Develop 'FabLab' Prototypes

US has lost dominance in highly intense, ultrafast laser technology to Europe and Asia

TIME AND SPACE
WASP-18b has smothering stratosphere without water

U of T researcher finds Earth-like conditions in little-known exoplanet - and discovers a new planet

Life's building blocks observed in spacelike environment

NASA Hosts Media Teleconference to Announce Latest Kepler Discovery

TIME AND SPACE
New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

Wrapping up 2017 one year out from MU69




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement