Subscribe free to our newsletters via your
. 24/7 Space News .

Quantum computers counting on carbon nanotubes
by Staff Writers
Garching, Germany (SPX) Mar 25, 2013

Like a guitar string nanotubes (black) can be clamped and excited to vibrate. An electric field (electrodes: blue) ensures that two of the many possible states can be selectively addressed. Image: M.J. Hartmann, TUM.

Carbon nanotubes can be used as quantum bits for quantum computers. A study by physicists at the Technische Universitaet Muenchen (TUM) has shown how nanotubes can store information in the form of vibrations. Up to now, researchers have experimented primarily with electrically charged particles.

Because nanomechanical devices are not charged, they are much less sensitive to electrical interference.

Using quantum mechanical phenomena, computers could be much more powerful than their classical digital predecessors. Scientists all over the world are working to explore the basis for quantum computing. To date most systems are based on electrically charged particles that are held in an "electromagnetic trap."

A disadvantage of these systems is that they are very sensitive to electromagnetic interference and therefore need extensive shielding. Physicists at the Technische Universitaet Muenchen have now found a way for information to be stored and quantum mechanically processed in mechanical vibrations.

Playing a nano-guitar
A carbon nanotube that is clamped at both ends can be excited to oscillate. Like a guitar string, it vibrates for an amazingly long time. "One would expect that such a system would be strongly damped, and that the vibration would subside quickly," says Simon Rips, first author of the publication.

"In fact, the string vibrates more than a million times. The information is thus retained up to one second. That is long enough to work with."

Since such a string oscillates among many physically equivalent states, the physicists resorted to a trick: an electric field in the vicinity of the nanotube ensures that two of these states can be selectively addressed. The information can then be written and read optoelectronically.

"Our concept is based on available technology," says Michael Hartmann, head of the Emmy Noether research group Quantum Optics and Quantum Dynamics at the TU Muenchen. "It could take us a step closer to the realization of a quantum computer."

The research was supported by the German Research Council (DFG) within the Emmy-Noether program and SFB 631. Quantum Information Processing with Nanomechanical Qubits; Simon Rips and Michael J. Hartmann, Physical Review Letters, 110, 1205034 (2013) DOI: 10.1103/PhysRevLett.110.120503


Related Links
Technische Universitaet Muenchen
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Researchers create nanoscale spinning magnetic droplets
Raleigh NC (SPX) Mar 20, 2013
Researchers have successfully created a magnetic soliton - a nano-sized, spinning droplet that was first theorized 35 years ago. These solitons have implications for the creation of magnetic, spin-based computers. Solitons are waves, localized in space, that preserve their size and momentum. They were first observed in water. Solitons composed of light have proved useful for long distance, ... read more

NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

Opportunity Heads to Matijevic Hill

Curiosity Resumes Science Investigations

Digging for hidden treasure on Mars

Sun in the Way Will Affect Mars Missions in April

Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

The Future of Exploration Starts With 3-D Printing

Lockheed Martin to Continue Providing Life Sciences Support To NASA

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Russia may recycle space station modules

New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

When quality counts: Arianespace reaffirms its North American market presence

SpaceX capsule returns after ISS resupply mission

SpaceX Dragon Spacecraft Carrying NASA Cargo Ready for Return to Earth

Dragon capsule to spend extra day in space

The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

DARPA Envisions the Future of Machine Learning

Removing orbital debris with less risk

New 'BioShock' game takes aim at American taboos

Japan finds rich rare earth deposits on seabed: study

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement