Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Quantum computers: Trust is good, proof is better
by Staff Writers
Vienna, Austria (SPX) Oct 09, 2013


The image is an illustration of the fundamental question: can quantum computations be verified by entities that are inherently unable to compute the results themselves? Image courtesy EQUINOX GRAPHICS.

A quantum computer can solve tasks not tractable with conventional supercomputers. The question of how one can, nevertheless, verify the reliability of a quantum computer was recently answered in an experiment at the University of Vienna. The conclusions are published in the reputed scientific journal Nature Physics.

The harnessing of quantum phenomena, such as superposition and entanglement, holds great promise for constructing future supercomputers. One huge advantage of such quantum computers is that they are capable of performing a variety of tasks much quicker than their conventional counterparts.

The use of quantum computers for these purposes raises a significant challenge: how can one verify the results provided by such a computer?

It is only recently that theoretical developments have provided methods to test a quantum computer without having an additional quantum computer at hand. The international research team around Philip Walther at the University of Vienna have now demonstrated a new protocol, where the quantum computational results can be verified without using additional quantum computer resources.

Laying traps for a quantum computer
In order to test the quantum computer the scientists inserted "traps" into the tasks. The traps are short intermediate calculations to which the user knows the result in advance. In the case that the quantum computer does not do its job properly the trap delivers a result that differs from the expected one.

"In this way, the user can verify how reliable the quantum computer really is", explains Stefanie Barz (Vienna), first author of the study. The more traps the user builds into the tasks the more sure the user can be that the quantum computer indeed computes accurately.

"We designed the test in such a way that the quantum computer cannot distinguish the trap from its normal tasks" say Elham Kashefi (Edinburgh) and Joseph Fitzsimons (Singapore), theorists and co-authors of the paper.

This is an important requirement to guarantee that the quantum computer is not able to tweak the test result. The researchers have also tested whether the quantum computer really resorts to quantum resources. Thereby, they can sure that even a maliciously constructed quantum computer cannot fool them into accepting incorrect results.

Implementing the idea with photons
For this first demonstration the researchers used an optical quantum computer, where single light particles, so-called photons, carried the information. The demonstrated protocol is generic, but optical quantum computers seem to be ideally suited for this task.

The mobility of photons allows for easy interactions with the quantum computer. Philip Walther is optimistic about the prospects raised by this experiment which shows promising control mechanisms for future quantum computers. And, moreover, that it might lead to new tools for probing even complex quantum resources.

Publication in "Nature Physics": Experimental verification of quantum computations: Stefanie Barz, Joseph F. Fitzsimons, Elham Kashefi, Philip Walther. Nature Physics, September 2013 Doi: 10.1038/nphys2763

.


Related Links
University of Vienna
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Domain walls as new information storage medium
Mainz, Germany (SPX) Sep 25, 2013
While searching for ever smaller devices that can be used as data storage systems and novel sensors, physicists at Johannes Gutenberg University Mainz (JGU) have directly observed magnetization dynamics processes in magnetic nanowires and thus paved the way for further research in the field of nanomagnetism. Small magnetic domain wall structures in nanowires can be used to store informatio ... read more


TECH SPACE
NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

China unveils its first and unnamed moon rover

Mission to moon will boost research and awareness

TECH SPACE
Martian settlement site to be printed on a printer

Spacecraft snaps dramatic images of giant scar on the surface of Mars

NAU researcher's closer look at Mars reveals new type of impact crater

ESA's test rover begins exploring Atacama Desert

TECH SPACE
Iran plans new monkey space launch

Scott Carpenter, second American in orbit, dies at 88

NASA ban on Chinese scientists 'inaccurate': lawmaker

Naval Institute History Conference: From Mercury to the Shuttle

TECH SPACE
China criticises US space agency over 'discrimination'

NASA ban on Chinese scientists 'inaccurate': lawmaker

What's Next, Tiangong?

Onward and upward as China marks 10 years of manned spaceflight

TECH SPACE
Aerojet Rocketdyne Thrusters Help Cygnus Spacecraft Berth at the International Space Station

First CASIS Funded Payloads Berthed to the ISS

Unmanned cargo ship docks with orbiting Space Station

New space crew joins ISS on Olympic torch mission

TECH SPACE
Sunshield preparations bring Gaia closer to deep-space Soyuz launch

SES-8 Arrives At Cape Canaveral For SpaceX Falcon 9 Launch

Spaceport Colorado and S3 Sign Memorandum of Understanding

Milky Way-mapping Gaia receives its sunshield

TECH SPACE
Space 'graveyard' reveals bits of an Earth-like planet

Scientists generate first map of clouds on an exoplanet

Diamond 'super-earth' may not be quite as precious

Lonely planet without a star discovered wandering our galaxy

TECH SPACE
Ultraviolet light to the extreme

Quantum computers: Trust is good, proof is better

Ultrasound system gives virtual feeling of objects in mid-air

Himawari and Mitsubishi Electric Complete Facilities For Weather Satellite Ops




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement