. 24/7 Space News .
CHIP TECH
Quantum chemistry on quantum computers
by Staff Writers
Osaka, Japan (SPX) Jan 03, 2019

file illustration only

Quantum computing and quantum information processing technology have attracted attention in recently emerging fields. Among many important and fundamental issues in nowadays science, solving Schroedinger Equation (SE) of atoms and molecules is one of the ultimate goals in chemistry, physics and their related fields. SE is "First Principle" of non-relativistic quantum mechanics, whose solutions termed wave-functions can afford any information of electrons within atoms and molecules, predicting their physicochemical properties and chemical reactions.

Researchers from Osaka City University (OCU) in Japan, Dr. K. Sugisaki, Profs. K. Sato and T. Takui and coworkers have found a novel quantum algorithm enabling us to perform full configuration interaction (Full-CI) calculations suitable for "chemical reactions" without exponential/combinatorial explosion. Full-CI gives the exact numerical solutions of SE, which are intractable problems with any supercomputers.

Such a quantum algorithm contributes to the acceleration of implementing practical quantum computers. Nowadays chemistry and physics have sought to predict complex chemical reactions by invoking Full-CI approaches since 1929, but never been successful until now. Now Full-CI calculations are potentially capable of predicting chemical reactions, and a new Full-CI approach suitable for the prediction is implemented on quantum computers, for the first time.

The paper will be published at 8:00 AM on Jan. 2, 2019 (US Eastern Time Zone) in ACS (American Chemical Society) Central Science.

They said, "As Dirac claimed in 1929 when quantum mechanics was established, the exact application of mathematical theories to solve SE leads to equations too complicated to be soluble. In fact, the number of variables to be determined in the Full-CI method grows exponentially against the system size, and it easily runs into astronomical figures such as exponential explosion.

For example, the dimension of the Full-CI calculation for benzene molecule C6H6, in which only 42 electrons are involved, amounts to 1044, which are impossible to be dealt with by any supercomputers. What is worse, molecular systems during the dissociation process are characterized by extremely complex electronic structures (multiconfigurational nature), and relevant numerical calculations are impossible on any supercomputers."

According to the OCU research group, quantum computers can date back to a Feynman's suggestion in 1982 that the quantum mechanics can be simulated by a computer itself built of quantum mechanical elements which obey quantum mechanical laws. After more than 20 years later, Prof. Aspuru-Guzik, Harvard Univ. (Toronto Univ. since 2018) and coworkers proposed a quantum algorithm capable of calculating the energies of atoms and molecules not exponentially but polynomially against the number of the variables of the systems, making a breakthrough in the field of quantum chemistry on quantum computers.

When Aspuru's quantum algorithm is applied to the Full-CI calculations on quantum computers, good approximate wave functions close to the exact wave functions of SE under study are required, otherwise bad wave functions need an extreme number of steps of repeated calculations to reach the exact ones, hampering the advantages of quantum computing.

This problem becomes extremely serious for the analyses of chemical reactions, which have many multiconfigurational nature due to electrons not participating in chemical bonding during the bond dissociation. The OCU researchers have tackled this problem, one of the most intractable issues in quantum science and chemistry, and made a breakthrough in implementing a new quantum algorithm generating particular wave functions termed configuration state functions (CSFs) in polynomial computing time in 2016 and 2018.

The previously proposed algorithms for quantum computing, however, are still demanding to efficiently solve SE for whole chemical reaction pathways, which inevitably involve the dissociation and formation of many chemical bonds and, as a result, generate so many electrons not participating in chemical bonds, making the quantum algorithms difficult to apply, termed "Quantum Dilemma".

The OCU researchers have introduced a "diradical character, yi(0 ~ 1)" to measure and characterize the nature of open shell electronic structures, and exploited the diradical characters to construct multiconfigurational wave functions required for chemical reactions, executing the Full-CI calculations along the whole reaction pathways on quantum computers.

This new procedure requires no time-consuming sophisticated post-Hartree-Fock calculations, avoiding the exponential explosion of the calculation and solving "Quantum Dilemma", for the first time.

The OCU group said, "This is the first example of a practical quantum algorithm, which makes quantum chemical calculations for predicting chemical reaction pathways realizable on quantum computers equipped with a sizable number of qubits. The implementation empowers practical applications of quantum chemical calculations on quantum computers in many important fields of chemistry and materials science."

Research paper


Related Links
Osaka City University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Russian researchers explore the prospects for creating photonic integrated circuits
Nizhny Novgorod, Russia (SPX) Jan 01, 2019
The transition from electronic integrated circuits to faster, more energy-efficient and interference-free optical circuits is one of the most important goals in the development of photon technologies. Photonic integrated circuits (PICs) are already used today for transmitting and processing signals in optical networks and communication systems, including, for example, I/O multiplexers of optical signals and microchips with an integrated semiconductor laser, a modulator and a light amplifier. Howev ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Global tech show to celebrate innovation amid mounting concerns

Roscosmos Chief Could Visit US in Early 2019, NASA Working on Sanctions Waiver

Investigators to Question Russia Cosmonauts Amid ISS 'Hole' Probe

NASA astronaut, crewmates return to Earth after 197-Day mission in space

CHIP TECH
New Materials Architectures Sought to Cool Hypersonic Vehicles

Putin hails 'successful' test of new hypersonic missile

SpaceX blasts off powerful GPS satellite for US military

Russia to Complete Flight Tests of Soyuz-2.1V Carrier Rocket in 2019 - Source

CHIP TECH
Mars Express gets festive: A winter wonderland on Mars

Mars 2020 rover to capture sound on the Red Planet

InSight places its first instrument on Mars

InSight Engineers Have Made a Martian Rock Garden

CHIP TECH
China launches first Hongyun project satellite

China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

Evolving Chinese Space Ecosystem To Foster Innovative Environment

CHIP TECH
Year of many new beginnings for Indian space sector

ESA astronaut Alexander Gerst returns to Earth for the second time

Spacecraft Repo Operations

Scaled back OneWeb constellation Not to affect number of Soyuz boosters

CHIP TECH
Silver nanowires promise more comfortable smart textiles

New composite advances lignin as a renewable 3D printing material

'Frozen' copper behaves as noble metal in catalysis: study

A major step closer to a viable recording material for future hard disk drives

CHIP TECH
NASA study finds sugars, key ingredient for life, can form in space

Narrowing the universe in the search for life

A young star caught forming like a planet

Planets with Oxygen Don't Necessarily Have Life

CHIP TECH
NASA spacecraft hurtles toward historic New Year's flyby

New Horizons Notebook: On Ultima's Doorstep

All About Ultima: New Horizons Flyby Target is Unlike Anything Explored in Space

Ultima Thule's First Mystery: Lack of a 'Light Curve'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.