Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















ENERGY TECH
Putting silicon 'sawdust' in a graphene cage boosts battery performance
by Staff Writers
Menlo Park CA (SPX) Jan 29, 2016


Time-lapse images from an electron microscope show a silicon microparticle expanding and cracking within its graphene cage as lithium ions rush in during battery charging. The cage is outlined in black, and the particle in red. Image courtesy Y. Li et al., Nature Energy. For a larger version of this image please go here.

Scientists have been trying for years to make a practical lithium-ion battery anode out of silicon, which could store 10 times more energy per charge than today's commercial anodes and make high-performance batteries a lot smaller and lighter. But two major problems have stood in the way: Silicon particles swell, crack and shatter during battery charging, and they react with the battery electrolyte to form a coating that saps their performance.

Now, a team from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory has come up with a possible solution: Wrap each and every silicon anode particle in a custom-fit cage made of graphene, a pure form of carbon that is the thinnest and strongest material known and a great conductor of electricity.

In a report published Jan. 25 in Nature Energy, they describe a simple, three-step method for building microscopic graphene cages of just the right size: roomy enough to let the silicon particle expand as the battery charges, yet tight enough to hold all the pieces together when the particle falls apart, so it can continue to function at high capacity. The strong, flexible cages also block destructive chemical reactions with the electrolyte.

"In testing, the graphene cages actually enhanced the electrical conductivity of the particles and provided high charge capacity, chemical stability and efficiency," said Yi Cui, an associate professor at SLAC and Stanford who led the research. "The method can be applied to other electrode materials, too, making energy-dense, low-cost battery materials a realistic possibility."

The Quest for Silicon Anodes
Lithium-ion batteries work by moving lithium ions back and forth through an electrolyte solution between two electrodes, the cathode and the anode. Charging the battery forces the ions into the anode; using the battery to do work moves the ions back to the cathode.

When it comes to making silicon anodes, scientists have been stymied by the fact that the silicon swells to three times its normal size during charging. For Cui and his collaborators, the quest first led to anodes made of silicon nanowires or nanoparticles, which are so small that they are much less likely to break apart.

The team came up with a variety of ways to confine and protect silicon nanoparticles, from structures that resemble pomegranates to coatings made of self-healing polymers or conductive polymer hydrogels like those used in soft contact lenses. But these were only partly successful; the efficiency of the resulting anodes was still not high enough, and nanoparticles are expensive and hard to manufacture.

"This new method allows us to use much larger silicon particles that are one to three microns, or millionths of a meter, in diameter, which are cheap and widely available," Cui said. "In fact, the particles we used are very similar to the waste created by milling silicon ingots to make semiconductor chips; they're like bits of sawdust of all shapes and sizes. Particles this big have never performed well in battery anodes before, so this is a very exciting new achievement, and we think it offers a practical solution."

It's All in the Coating
For the graphene cages to work, they have to fit the silicon particles exactly. The scientists accomplished this in a series of steps: First they coated silicon particles with nickel, which can be applied in just the right thickness. Then they grew layers of graphene on top of the nickel; happily the nickel acts as a catalyst to promote graphene growth. Finally they etched the nickel away, leaving just enough space within the graphene cage for the silicon particle to expand.

"Researchers have tried a number of other coatings for silicon anodes, but they all reduced the anode's efficiency," said Stanford postdoctoral researcher Kai Yan, who carried out the experiments with graduate student Yuzhang Li. "The form-fitting graphene cages are the first coating that maintains high efficiency, and the reactions can be carried out at relatively low temperatures."

Now the team will work on fine-tuning the process, Li added, and on producing caged silicon particles in large enough quantities to build commercial-scale batteries for testing.

Other researchers contributing to the study were Stanford's Hyun-Wook Lee, Zhenda Lu and Nian Liu. The research was carried out by SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC, and funded by the Battery Materials Research program of the DOE's Vehicle Technologies Office. Y. Li et al., Nature Energy, 25 January 2016 (10.1038/nenergy.2015.29)

.


Related Links
SLAC National Accelerator Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Corvus Energy announces new performance specifications for lithium ion battery systems
Richmond, Canada (SPX) Jan 26, 2016
Corvus Energy has validated and is restating the product specifications for its lithium ion battery systems reflecting that the system has double the RMS power capability and substantially more energy capacity than previously reported. As part of its ongoing testing regimen, Corvus worked closely with LAEC and its founder, Dr. Majid Bahrami, at its state-of-the-art testing lab located at S ... read more


ENERGY TECH
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

ENERGY TECH
Opportunity Abrasion Tool Conducts Two Rock Grinds

Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

ENERGY TECH
Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

Russian Space Agency discussing possible training of Iranian astronaut

ENERGY TECH
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

ENERGY TECH
Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Water in US astronaut's helmet cuts short Briton's 1st spacewalk

ENERGY TECH
Ariane 5 is readied for an Arianespace leading customer Intelsat

Roscosmos Approves Delay of Eutelsat 9B Launch Due to Bad Weather

Assembly begins on 2nd Ariane 5 launcher for 2016

EpicNG satellite installed on Ariane 5 for launch

ENERGY TECH
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

ENERGY TECH
Acoustic tweezers provide much needed pluck for 3-D bioprinting

Designing a pop-up future

Chanel swaps bling for eco-inspired haute couture

Material may offer cheaper alternative to smart windows




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.