. 24/7 Space News .
STELLAR CHEMISTRY
Punching Above Its Weight, Brown Dwarf Launches Parsec-Scale Jet
by Staff Writers
Tucson AZ (SPX) May 18, 2017


The HH 1165 jet launched by a brown dwarf in the outer periphery of the Sigma Orionis cluster. Traced by emission from singly ionized sulfur, which appears green in the image, the jet extends 0.7 light-year (equivalent to 0.2 parsec) northwest of the brown dwarf.

Astronomers using the SOAR telescope at the Cerro Tololo Inter-American Observatory report the discovery of a spectacular extended jet from a young brown dwarf. With masses too low to sustain hydrogen fusion in their interiors, brown dwarfs occupy the mass range between stars and giant planets. While young stars are commonly found to launch jets that extend over a light-year or more, this is the first jet with a similar extent detected from a brown dwarf. The result lends new insight into how substellar objects form.

Intrinsically faint, brown dwarfs have been more elusive and difficult to study than stars. Although they are often portrayed as exotic creatures as a result, brown dwarfs are actually far more numerous in our galaxy than stars like the Sun.

The discovery, accepted for publication in the Astrophysical Journal, supports the emerging picture that brown dwarfs form similarly to stars.

The image shows the jet, HH 1165, launched by the brown dwarf Mayrit 1701117 in the outer periphery of the 3 million year old Sigma Orionis cluster. Traced by emission from singly ionized sulfur, which appears green in the image, the jet extends 0.7 light-year (equivalent to 0.2 parsec) northwest of the brown dwarf. The emission knots along the jet reveal that the mass loss is time variable, probably a result of episodic accretion onto the brown dwarf. The red nebulosity southeast of the brown dwarf is a reflection nebula that traces the outflow cavity in the direction of the counterjet.

While outflows have been detected previously from young brown dwarfs, the earlier detections were of "microjets" 10 times smaller in extent. "Our result shows that brown dwarfs can launch parsec-scale jets similar to those from young stars," explains Basmah Riaz, who led the study.

The image, taken with the SOAR telescope using the SOAR Adaptive Optics Module, was obtained in several hours of integration time. As described by co-author Cesar Briceno: "We could see the surprisingly extended jet emission after the first 30 minutes of integration. It was a real 'Wow' moment!"

For some time, astronomers have suspected that brown dwarfs form much like stars. Like stars, brown dwarfs are known to be surrounded by disks at birth and to build up their masses by accretion from molecular cloud cores. The current discovery goes a step further and shows that, like stars, brown dwarfs launch powerful jets and that they build up their mass through an unsteady, episodic process.

"The HH 1165 jet shows all the familiar hallmarks of outflows from stars: emission knots, a cavity with reflection nebulosity, and bow shocks at the ends of the flow. It checks all the boxes quite convincingly," commented co-author Emma Whelan.

While it may seem counterintuitive that mass loss (in a jet) is an integral part of how an object grows or gains mass, this situation may arise because of excess angular momentum. When spinning skaters pull in their arms, they spin faster as a result of conservation of angular momentum. Similarly, when large, slowly rotating molecular cloud cores collapse, they may spin up too fast to squeeze down to the much smaller sizes of stars.

Riaz speculates that indeed, "Molecular cloud cores have much more angular momentum than can be contained by stars or brown dwarfs. So the system needs to lose angular momentum for the object to grow in mass. By removing angular momentum from the system, jets help solve the `angular momentum problem' faced by stars as well as brown dwarfs."

To test this hypothesis, the team is on the hunt for more extended jets from brown dwarfs, to understand how commonly they occur.

Research Report: "First Large Scale Herbig-Haro Jet Driven by a Proto-Brown Dwarf," Basmah Riaz et al., 2017, to appear in the Astrophysical Journal

STELLAR CHEMISTRY
A Ground-Breaking Tool to Reconstruct the History of Galaxies
Porto,Portugal (SPX) May 17, 2017
FADO is a new analysis tool, developed by Instituto de Astrofisica e Ciencias do Espaco[2] (IA) astronomers Jean Michel Gomes and Polychronis Papaderos, which uses light emitted by both stars and ionized gas in a galaxy, to reconstruct its formation history by means of genetic algorithms. This tool was presented in a recent article[3], accepted for publication in the journal Astronomy and Astrop ... read more

Related Links
National Optical Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Saving time in space

SpaceX Dragon to deliver research payloads to Space Station

ISS crew harvest new crop of vegetables grown in space

Joint Statement: The Fourth Meeting of the U.S.-Japan Comprehensive Dialogue on Space

STELLAR CHEMISTRY
Arianespace launches SES-15 using Soyuz rocket

ULS wins $208Mln for rocket vehicle production services

Sky Skimmer: Rocket Lab Sets Date for Lightweight Spacecraft Test Launch

Washington Still Has No Engine to Replace Russian-Made RD-180

STELLAR CHEMISTRY
HI-SEAS Mission V Mars simulation marks midway point

How hard did it rain on Mars

Deciphering the fluid floorplan of a planet

Mars Rover Opportunity Begins Study of Valley's Origin

STELLAR CHEMISTRY
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

STELLAR CHEMISTRY
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

STELLAR CHEMISTRY
Entropy landscape sheds light on quantum mystery

Revolutionary new sunscreen features melanin-mimicking nanoparticles

HP Enterprise unveils computer 'for era of Big Data'

3D-printed maritime propeller on way

STELLAR CHEMISTRY
Radio Detection of Lonely Planet Disk Shows Similarity with Stars

ALMA eyes icy ring around young planetary system

New study sheds light on origins of life on Earth through molecular function

Metabolism, not RNA, jump-started life's molecular beginnings

STELLAR CHEMISTRY
Hubble spots moon around third largest dwarf planet

NASA asks science community for Europa Lander Instruments ideas

Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.