. 24/7 Space News .
TIME AND SPACE
Probing the geometry of energy bands
by Staff Writers
Munich, Germany (SPX) Jun 06, 2016


The researchers interfere three laser beams at 120-degree angles to form a graphene-like honeycomb lattice. The atoms are trapped in the honeycomb structure formed by the valleys (dark blue) of the potential. Image courtesy T. Li, LMU/MPQ.

Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich and the Max Planck Institute for Quantum Optics (MPQ) have devised a new interferometer to probe the geometry of band structures. The geometry and topology of electronic states in solids play a central role in a wide range of modern condensed-matter systems, including graphene and topological insulators.

However, experimentally accessing this information has proven to be challenging, especially when the bands are not well isolated from one another.

As reported by Tracy Li et al. in Science, an international team of researchers led by Professor Immanuel Bloch and Dr. Ulrich Schneider at LMU Munich and the Max Planck Institute of Quantum Optics has devised a straightforward method with which to probe band geometry using ultracold atoms in an optical lattice.

Their method, which combines the controlled transport of atoms through the energy bands with atom interferometry, is an important step in the endeavor to investigate geometric and topological phenomena in synthetic band structures.

A wide array of fundamental issues in condensed-matter physics, such as why some materials are insulators while others are metals, can be understood simply by examining the energies of the material's constituent electrons.

Indeed, band theory, which describes these electron energies, was one of the earliest triumphs of quantum mechanics, and has driven many of the technological advances of our time, from the computer chips in our laptops to the liquid-crystal displays on our smartphones. We now know, however, that traditional band theory is incomplete.

Among the most surprising and fruitful developments in modern condensed-matter physics was the realization that band structure involves more than the just the electron energies - the geometric form of the bands also plays an important role.

Indeed, this geometric contribution is responsible for much of the exotic physics in newly discovered materials such as graphene or topological insulators, and underlies a variety of exciting technological possibilities from spintronics to topological quantum computing. It is, however, notoriously difficult to access this information experimentally.

Now, an international team of researchers led by Immanuel Bloch (Professor of Experimental Physics at LMU Munich and a Director of the Max Planck Institute of Quantum Optics (MPQ)) has devised a straightforward method to probe band geometry using ultracold atoms in an optical lattice, a synthetic crystal formed from standing waves of light. Their method relies on creating a system that can be described by a quantity known as the Wilson line, and the experimental tests performed at LMU and the MPQ have verified that the technique allows one to explore the geometry of band structure.

Although originally formulated in the context of quantum chromodynamics, it turns out that Wilson lines also describe the evolution of degenerate quantum states, i.e., quantum states with the same energy.

Applied to condensed-matter systems, the elements of the Wilson line directly encode the geometric structure of the bands. Therefore, to access the band geometry, the researchers need only to access the Wilson line elements.

The problem, however, is that the bands of a solid are generally not degenerate. However, the researchers realized that there was a way to get around this: When moved fast enough in momentum space, the atoms no longer feel the effect of the energy bands and their behavior is influenced only by the essential geometric information. In this regime, two bands with different energies behave like two bands with the same energy.

In their work, the researchers first cooled atoms to quantum degeneracy. The atoms were then placed into an optical lattice formed by laser beams to realize a system that mimics the behavior of electrons in a solid, but without the added complexities of real materials.

In addition to being exceptionally clean, optical lattices are highly tunable - different types of lattice structures can be created by changing the intensity or polarization of the light. In their experiment, the researchers interfered three laser beams to form a graphene-like honeycomb lattice.

Although spread out over all lattice sites the quantum degenerate atoms carry a well-defined momentum in the light crystal. The researchers then rapidly accelerated the atoms to a different momentum and measured the magnitude of the excitations they created.

When the acceleration is fast enough, such that the system is described by the Wilson line, this straightforward measurement reveals how the electronic wave function at the higher momentum differs from the wave function at the initial momentum.

Repeating the same experiment at many different crystal momenta would yield a complete map of how the wave functions change over the entire momentum space of the artificial solid.

The researchers not only confirmed that it was possible to move the atoms in such a fashion that the dynamics were described by two-band Wilson lines, the measurements at different momenta also revealed both the local, geometric properties and the global, topological structure of the bands.

While the lowest two bands of the honeycomb lattice are known not to be topological, the results demonstrate that Wilson lines can indeed be experimentally used to probe and uncover the band geometry and topology in these novel synthetic settings.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ludwig-Maximilians-Universitat Munchen
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Scientists experimentally confirm electron model in complex molecules
Moscow, Russia (SPX) Jun 03, 2016
Researchers from the Institute of Molecular Science and Technologies (ISTM-CNR, Italy), Moscow Institute of Physics and Technology (MIPT), and the University of Milan have experimentally confirmed a model to detect electron delocalization in molecules and crystals. The chemists, whose paper was published in Acta Crystallographica, have also illustrated examples on how the same approach hav ... read more


TIME AND SPACE
Airbus Defence and Space to guide lunar lander to the Moon

Fifty Years of Moon Dust

A new, water-logged history of the Moon

Russian Firm Develops Project of Reusable Spacecraft for Lunar Missions

TIME AND SPACE
SpaceX could send people to Mars by 2024, Elon Musk says

Red and Golden Planets at Opposition

Opportunity investigating soil exposed by rover wheel

Mars makes closest approach to Earth in 11 years

TIME AND SPACE
India Presses Ahead With Space Ambitions

Fun LoL to Teach Machines How to Learn More Efficiently

International Partners Provide Science Satellites for first SLS mission

'Metabolomics: You Are What You Eat' video

TIME AND SPACE
Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

Chine's satellite industry eyes global satellite market

TIME AND SPACE
BEAM Leak Checks Before Crew Enters Next Week

HERA Mission 10 Crew to "Splashdown" on Wednesday

One Carbon Metabolism on the Space Station

Airbus DS and ESA launch external commercial payload platform for the ISS

TIME AND SPACE
United Launch Alliance gets $138 million Atlas V contract

EchoStar XVIII and BRIsat are installed on Arianespace's Ariane 5

SpaceX makes fourth successful rocket landing

Arianespace to supply payload dispenser systems for OneWeb constellation

TIME AND SPACE
Astronomers find giant planet around very young star

Planet 1,200 Light-Years Away Is Good Prospect for a Habitable World

Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

TIME AND SPACE
Scientists test world's most intense gamma radiation source

Calculating the mechanics of a rough sphere

Microsoft wants Windows to open into mixed reality

Believe the hype? How virtual reality could change your life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.