. 24/7 Space News .
TECH SPACE
Predicting the limits of friction: Sandia looks at properties of material
by Staff Writers
Albuquerque NM (SPX) Apr 06, 2017


Sandia National Laboratories researchers Michael Chandross, left, and Nicolas Argibay show a computer simulation and an ultrahigh vacuum tribometer used in friction and wear testing, which are among the tools they use in a collaborative effort that developed a model to predict the friction behavior of metals. The goal is to understand friction and wear of materials at the most fundamental level. Image courtesy Sandia National Laboratories/Randy Montoya.

Normally, bare metal sliding against bare metal is not a good thing. Friction will destroy pistons in an engine, for example, without lubrication. Sometimes, however, functions require metal on metal contact, such as in headphone jacks or electrical systems in wind turbines. Still, friction causes wear and wear destroys performance, and it's been difficult to predict when that will happen.

Until now.

Sandia National Laboratories materials scientists Nicolas Argibay and Michael Chandross and colleagues developed a model to predict the limits of friction behavior of metals based on materials properties - how hard you can push on materials or how much current you can put through them before they stop working properly. They've presented their results at invited talks, most recently the 2016 Gordon Research Conference on Tribology, and in peer-reviewed papers, including a recent Journal of Materials Science article.

Their model could change the world of electrical contacts, affecting industries from electric vehicles to wind turbines. Understanding the fundamental causes of failure in metal contacts allows engineers to step in and fix the problem, and potentially lights up more paths toward new materials designs.

Linking science to engineering applications
"It's a tool to do design and it's a tool to do science," Argibay said. "It's really that link between fundamental science and engineering applications."

The discovery of how to predict the friction behavior of metals began as a study of specific materials for projects.

"It's a moment where you go from just having to say, 'The materials behavior will be this because we measured it in those conditions' to saying, 'I can tell you what conditions you can run in and get the behavior you want,'" Argibay said. "In fact, we provide guidelines for developing new materials."

Designers choose materials based on engineering rules of thumb under certain operating conditions, using the conventional wisdom that harder materials create less friction.

But Sandia's research demonstrates the stability of the microstructure governs the friction behavior engineers care about, and that changes how engineers can think about design when they characterize and select materials, the researchers said.

The team studied pure metals, such as gold and copper, to break down the friction problem by looking at the simplest systems. Once they understood the fundamental behavior of pure metals, it was easier to demonstrate that these ideas apply to more complex structures and more complex materials, they said.

Idea began with separate project
The idea developed in a convoluted fashion, starting several years ago when Chandross was asked for simulations to help improve hard gold coatings - soft gold with a minor amount of another metal to make it harder. Gold is an efficient, corrosion-resistant conductor, but generally has high adhesion and friction - and thus high wear.

That project produced a paper that excited Argibay, who told Chandross he could do experiments to prove the concepts the paper described.

"From those experiments, the whole thing exploded," Chandross said.

"We looked at the pure metals as a way to validate some of the hypotheses we had from Mike's analysis of more complex systems," Argibay explained. "If these ideas work in more complex systems, they ought to work in the most difficult scenario, the least likely scenario conventionally, and they did."

Sandia's work has implications for the growing worlds of wind turbines and electric vehicles, where companies seek an edge over the competition. The demand for electric cars and alternative ways of making electricity are likely to expand and in turn create demand for new technologies.

Argibay is helping design and develop a prototype rotary electrical contact for wind turbines that began as a Laboratory Directed Research and Development (LDRD) project.

"Basically we're bringing back technologies that were discarded because they didn't really understand the materials and couldn't make them work where and how they wanted to," he said.

New projects are ongoing
The project is exploring copper against a copper alloy for a high-performance, efficient electrical contact. That could allow the wind turbine industry to explore designs that weren't possible before.

In addition, the electrical contacts industry, which now uses alternating current in devices, might finally be able to turn to direct current devices as higher performance alternatives. As a possible interim step, Sandia researchers are exploring metallic electrical contacts as a drop-in for some applications, avoiding major changes in how the devices work.

If they demonstrate the theory is sound, then engineers can change how they think about the fundamentals of design in some of these devices, they said.

Follow-up funding allowed the team to study the variable of temperature, and now Chandross has begun an LDRD project to look at metals with other structures. Previous work has been done with face-centered cubic structured metals. Chandross' project seeks to understand friction in body-centered cubic metals, BCC metals, most commonly used for structural purposes. Researchers are looking at iron and tantalum.

Conventional wisdom holds that BCC metals won't produce low friction. "This is one of those instances where understanding the molecular scale or atomic scale mechanisms caused us to say, 'Yes, but they're bad only if you're not in the right conditions.' What happens when you are in the right conditions?" Chandross said.

BCC metals could open up more design and engineering possibilities for wind power generation and electric vehicles, improving efficiency and ultimately reducing maintenance and manufacturing costs.

TECH SPACE
A self-healing, water-repellant coating that's ultra durable
Ann Arbor MI (SPX) Apr 06, 2017
A self-healing, water-repellent, spray-on coating developed at the University of Michigan is hundreds of times more durable than its counterparts. It could enable waterproofing of vehicles, clothing, rooftops and countless other surfaces for which current waterproofing treatments are too fragile. It could also lower the resistance of ship hulls, a step that would reduce the fuel consumption of t ... read more

Related Links
Sandia National Laboratories
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
US, Russian Astronauts Prepare for April Crew Swap on Space Station

US astronaut John Glenn is buried with military honors

No Roscosmos plans to send space tourists to ISS before 2020

Russia, Europe, US Should Work Together on Space Exploration - German Agency

TECH SPACE
Dream Chaser to use Europe's next-generation docking system

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

Europe's largest sounding rocket launched from Esrange

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

TECH SPACE
Russia critcal to ExoMars Project says Italian Space Agency Head

Chile desert combed for clues to life on Mars

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

TECH SPACE
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

TECH SPACE
Ukraine in talks with ESA to become member

BRICS States Want to Expand Cooperation to Space Science

Mitsubishi Electric to Build New Satellite Production Facility

Horizon 2020 European funded DEMOCRITOS project concludes work with some key outcomes

TECH SPACE
New research could help speed up the 3-D printing process

A self-healing, water-repellant coating that's ultra durable

Norway joins US Strategic Command space data sharing program

Citizen scientist photographs space station space debris from Earth

TECH SPACE
Inside Arctic ice lies a frozen rainforest of microorganisms

Exoplanet mission gets ticket to ride

Atmosphere around super-earth detected

Possible Venus twin discovered around dim star

TECH SPACE
Hubble takes close-up portrait of Jupiter

Neptune's movement from the inner to the outer solar system was smooth and calm

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.