. 24/7 Space News .
TECH SPACE
Predicting the Lifespan of Materials in Space
by Debbie Lockhart for GRC News
Cleveland OH (SPX) Mar 21, 2018

File image

Almost every product we use has a shelf life. From milk and meat to laundry detergent and batteries, it's important to know when it's safe to use a product, and when it's time to replace it. But what about materials used for spacecraft?

It is vital for scientists to know exactly how long a material will last in outer space; which is why Kim de Groh, a senior materials research engineer at NASA's Glenn Research Center in Cleveland, is gathering data from the Materials International Space Station Experiment (MISSE) missions.

In April, de Groh will send 138 different material samples to the International Space Station as part of MISSE-9, which will be launched on SpaceX CRS-14 aboard a Dragon spacecraft. These samples will be part of the first MISSE mission to use the space station's new external materials testing platform, the MISSE-Flight Facility (MISSE-FF).

De Groh wants to know how long these materials will last in outer space and will learn this by analyzing the affects atomic oxygen and radiation have on exposed polymers, composites and coatings. The flight data is needed to predict spacecraft performance and durability.

On Earth, the oxygen we breathe is made of two atoms of oxygen (O2), but in space the sun's rays break down (O2) into single oxygen atoms, creating atomic oxygen.

When spacecraft, such as the space station and resupply vehicles, travel in low-Earth orbit, atomic oxygen can react with its surfaces, causing materials, such as polymers, to erode. In addition, radiation can cause spacecraft materials to become brittle and crack.

De Groh has been involved with the MISSE missions since they began in 2001, and through this research, de Groh and her colleague Bruce Banks, have developed a model to predict the erosion of materials in space.

MISSE-9 will expose materials in each flight orientation on the space station. This includes forward facing known as "ram," rear-facing known as "wake," space-facing known as "zenith," and Earth-facing, known as "nadir." Flying samples in each orientation will show how the varying atomic oxygen and solar exposures in each position affect material.

"We will fly some of the same materials in different orientations as the same material can react differently in each flight direction," said de Groh.

The researchers expect the highest exposure to atomic oxygen for the ram samples and the least exposure to atomic oxygen for the wake samples. The highest solar exposure is likely for the zenith samples and the lowest solar exposure for the nadir samples. Monthly photos will be taken of the samples while in space showing color changes or sample cracking.

After a year in space, the MISSE-9 samples will be returned to Earth for post-flight analyses.

The data obtained from this mission will enable de Groh to make more accurate predictions of materials and component lifetimes in space, allowing engineers to build longer-lasting vehicles for spaceflight.


Related Links
Space Station Research and Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
A new way to combine soft materials
Boston MA (SPX) Mar 20, 2018
Every complex human tool, from the first spear to latest smartphone, has contained multiple materials wedged, tied, screwed, glued or soldered together. But the next generation of tools, from autonomous squishy robots to flexible wearables, will be soft. Combining multiple soft materials into a complex machine requires an entirely new toolbox - after all, there's no such thing as a soft screw. Current methods to combine soft materials are limited, relying on glues or surface treatments that can re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronaut Scott Kelly weighs in on the 'State of Science'

NASA Awards $96 Million to U.S. Small Businesses for Tech Research, Development

Russia, China strike deal to jointly explore outer space

Knowledge matters for Year of Education on Station

TECH SPACE
Air Force awards launch contracts to SpaceX and ULA

India working on 16 ton payload capacity to GEO Transfer Orbit

ILS secures additional launch orders for Proton medium vehicle

Ukraine eyes new Spaceport downunder

TECH SPACE
360 Video: Tour a Mars Robot Test Lab

Next NASA Mars Rover Reaches Key Manufacturing Milestone

Asteroids and comets shower Mars with organics

Opportunity is Halfway Down the Valley

TECH SPACE
China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

Satellite will test plan for global China led satcom network

TECH SPACE
Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Ground-breaking satellite projects will transform society

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

TECH SPACE
NASA, ATLAS to Mature Portable Space Communications Technology

On The Horizon: A Space Renaissance

A new way to combine soft materials

ORNL researchers design novel method for energy-efficient deep neural networks

TECH SPACE
Team discovers that wind moves microinvertebrates across desert

Yale's Expres Instrument ready to find the next Earth Analog

NASA's Kepler Spacecraft Nearing the End as Fuel Runs Low

Study sheds light on the genetic origins of the two sexes

TECH SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.