. 24/7 Space News .
CARBON WORLDS
Plankton carries carbon to safe resting spot
by Staff Writers
Columbus OH (SPX) Feb 12, 2016


This is the crew aboard Tara in the open ocean. Image courtesy S. Bollet -- Tara Expeditions. For a larger version of this image please go here.

The ocean's power to rein in carbon and protect the environment is vast but not well-understood. But now, an international team of scientists has begun to illuminate how the ocean plucks carbon from the atmosphere, where it contributes to global warming, and shuttles it to the bottom of the sea.

The new study establishes the important role of plankton networks in removing carbon from the atmosphere and depositing it deep in the ocean. And it opens up opportunities for caring for the ocean in ways that encourage it to absorb more carbon.

The knowledge comes out of the unprecedented three-year Tara Oceans Expedition, in which a team of more than 200 experts took to the sea to catalog and better understand the unseen inhabitants of the ocean, from tiny animals to viruses and bacteria.

The latest in a series of studies from the project appears in the current issue of the journal Nature and includes work by Matthew Sullivan, an assistant professor of microbiology at The Ohio State University, and Jennifer Brum and Simon Roux, postdoctoral researchers in Sullivan's lab.

"We're trying to understand, 'Does carbon in the surface ocean sink to the deep ocean and, if so, how?'" Sullivan said.

"The reason that's important is the oceans help mitigate our carbon footprint on this planet."

The Tara team used advanced genetic sequencing to survey tiny ocean dwellers and, through a complex analytical approach, was able to identify those clusters of ocean inhabitants most linked to depositing carbon in the deep ocean.

"It's the first community-wide look at what organisms are good predictors of how carbon moves in the ocean," Sullivan said.

For decades, scientists have sought a way to look at a community such as the ocean on a genetic level and to use that information to make larger measurements of complex communities and predict how the ecosystem works.

This study measured abundances of microbes (viruses, bacteria, archaea and small eukaryotes) and then used statistical approaches and computer modeling to determine which microbes are most closely linked with the downward movement of carbon in the ocean.

Phytoplankton, or the plants in the sea, are known to be able to take carbon from the atmosphere and carry it deep into the ocean. However, few of the thousands of phytoplankton species have been studied in this way.

This new work employed cameras to capture images of organisms at different depths of the ocean to better identify sinking patterns for all plankton. These measurements, combined with new knowledge about the interplay between organisms and advanced analyses, enabled the researchers to determine which phytoplankton best predict the movement of carbon from the ocean's surface to the deep sea. And the strongest predictors were surprises.

Sullivan's team played a key role in better understanding the role of viruses in this process, by providing a global map of virus abundances. After the numbers were crunched, it appears that the abundance of relatively few bacterial and viral genes can predict variation in sinking carbon. The most important viruses appear to infect cells called cyanobacteria.

The Tara project's approach (fishing with a very large net rather than studying a limited number of organisms) allowed the team to establish a relationship between tiny viruses and carbon export in the phytoplankton community, Roux said.

"What was really surprising was that only a handful - less than 10 out of more than 5,000 - viruses seem to be specifically linked to carbon export. This means that we can now go after these key players specifically and try to characterize their impact on the ecosystem," he said.

The Tara work could also help scientists understand how high carbon levels in the atmosphere are affecting the ocean, Sullivan said.

More carbon entering oceans acidifies the waters, which stresses marine organisms and alters marine life. Ultimately, this could mean the difference between whether there's enough tuna for your sushi dinner, Sullivan said.

The study also included first-of-its-kind computer modeling that helps the team identify hotspots in the ocean where more carbon movement is happening, based on the microorganisms that are present.

"These findings help us better understand how the ocean works, but these new approaches can be used by anyone studying microbial processes in any ecosystem," he said.

The Tara project included thousands of samples of ocean life collected at hundreds of sites in the Indian, North Atlantic, South Atlantic, South Pacific and Southern oceans and in the Mediterranean Sea. It has allowed for a better understanding of the interplay of organisms in the ocean and of their role in the health of the planet.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ohio State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene
Berlin, Germany (SPX) Jan 29, 2016
Fuel cells convert the chemical energy stored in hydrogen (H2) into electrical energy by electrochemically "combusting" hydrogen gas with oxygen (O2) from the air into water (H2O), thereby generating electricity. As a result, future electric automobiles might be operated quite well with fuel cells instead of with heavy batteries. But for "cold" combustion of hydrogen and oxygen to function ... read more


CARBON WORLDS
Edgar Mitchell, astronaut who walked on Moon, dead at 85

The forgotten moon landing that paved the way for today's space adventures

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

CARBON WORLDS
Opportunity climbing steeper slopes to reach science targets

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

CARBON WORLDS
Are private launches changing the rocket equation?

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Mars or the Moon

The Orion Crew Module Pressure Vessel Ready For Testing

CARBON WORLDS
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

CARBON WORLDS
Russians spacewalk to retrieve biological samples

Russia to Deliver Three Advanced Spacesuits to ISS in 2016

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

CARBON WORLDS
Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

CARBON WORLDS
The frigid Flying Saucer

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

CARBON WORLDS
Body temperature triggers newly developed polymer to change shape

Making sense of metallic glass

Twisted X-rays unravel the complexity of helical structures

A deep look into a single molecule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.