. 24/7 Space News .
Planetary Survivor Strategy: Outeat, "Outweigh," Outlast!

by jove survival is hardwork

Boston - Dec 30, 2003
Of the first 100 stars found to harbor planets, more than 30 stars host a Jupiter-sized world in an orbit smaller than Mercury's, whizzing around its star in a matter of days (as opposed to our solar system where Jupiter takes 12 years to orbit the Sun). Such close orbits result from a race between a nascent gas giant and a newborn star.

In the October 10, 2003, issue of The Astrophysical Journal Letters, astronomers Myron Lecar and Dimitar Sasselov showed what influences this race. They found that planet formation is a contest, where a growing planet must fight for survival lest it be swallowed by the star that initially nurtured it.

"The endgame is a race between the star and its giant planet," says Sasselov. "In some systems, the planet wins and survives, but in other systems, the planet loses the race and is eaten by the star."

Although Jupiter-sized worlds have been found orbiting incredibly close to their parent stars, such giant planets could not have formed in their current locations. The oven-like heat of the nearby star and dearth of raw materials would have prevented any large planet from coalescing. "It's a lousy neighborhood to form gas giants," says Lecar. "But we find a lot of Jupiter-sized planets in such neighborhoods. Explaining how they got there is a challenge."

Theorists calculate that so-called "hot Jupiters" must form farther out in the disk of gas and dust surrounding the new star and then migrate inward. A challenge is to halt the planet's migration before it spirals into the star.

A Jupiter-like world's migration is powered by the disk material outside the planet's orbit. The outer protoplanetary disk inexorably pushes the planet inward, even as the planet grows by accreting that outer material. Lecar and Sasselov showed that a planet can win its race to avoid destruction by eating the outer disk before the star eats it.

Our solar system differs from the "hot Jupiter" systems in that the race must have ended quite early. Jupiter migrated for only a short distance before consuming the material between it and the infant Saturn, bringing the King of Planets to a halt. If the protoplanetary disk that birthed our solar system had contained more matter, Jupiter might have lost the race. Then it and the inner planets, including Earth, would have spiraled into the Sun.

"If Jupiter goes, they all go," says Lecar.

"It's too early to say that our solar system is rare, because it's easier to find 'hot Jupiter' systems with current detection techniques," says Sasselov. "But we certainly can say we're fortunate that Jupiter's migration stopped early. Otherwise, the Earth would have been destroyed, leaving a barren solar system devoid of life."

Related Links
Harvard-Smithsonian Center for Astrophysics
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Planet-Formation Model Indicates Earthlike Planets Might Be Common
Seattle - Dec 11, 2003
Astrobiologists disagree about whether advanced life is common or rare in our universe. But new research suggests that one thing is pretty certain - if an Earthlike world with significant water is needed for advanced life to evolve, there could be many candidates.







  • Wanted: 'Space Depot' For The Rocket Builders
  • The Spaceship And The Zeppelin
  • Space Adventures Signs Two For Soyuz Taxi With Option On Two More Seats
  • Space Adventures Claims Two Soyuz Tickets Sold

  • Communication Strategy of the Beagle 2 "Think Tank"
  • An Odyssey of Martian Science: Part Two
  • An Odyssey of Martian Science: Part Two
  • An Odyssey of Martian Science: Part Two

  • ILS Closes out 2003 with 6 Successful Launches, 11 New Awards
  • XTAR Selects Arianespace To Launch The XTAR-EUR Satellite
  • Arianespace To Launch MSG 3
  • NASA Completes Successful Year Of ELV Launches

  • First Set of Images from OrbView-3 Satellite Released
  • Disaster Monitoring Constellation Partners Hold 4th Meeting
  • NASA Learning To Monitor Coral Reef Health From The Sky
  • Second GEO Meeting Highly Constructive

  • First Detection Of CO In Uranus
  • Pushing Out The Kuiper Belt
  • New Horizons Mission Team Plans Jupiter Encounter
  • Pluto Mission May Be Early Victim Of Growing Budget Crisis

  • Interstellar Hydrogen Shadow Observed For The First Time
  • Three-Ton Science Experiment To Cruise South Pole Skies For Cosmic Rays
  • NASA Selects SwRI Proposal To Study Interstellar Boundary
  • New View Of Milky Way In Gamma Rays

  • Overall Status, Current Activities And Planned Activities
  • SMART-1 Is Flying At Full Speed
  • SMART-1 Is Changing Thrust Strategy To Avoid Long Eclipses
  • SMART-1 Keeps On Thrusting With Solar Heated Gas

  • The Automatic Control Of Civil Engineering Machines By Satellite Navigation
  • Delta 2 Launches Last GPS Series 2R Bird
  • New Ground Moving Target Engagement System Hits Tank With JDAM
  • Galileo's Implementation Set to Boost European GPS Applications Markets

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement