Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



Physicists Find Way To See Extra Dimensions

The implications of such a possibility are profound, says Tye. "If this shape can be measured, it would also tell us that string theory is correct."
by Staff Writers
Madison WI (SPX) Feb 07, 2007
Peering backward in time to an instant after the big bang, physicists at the University of Wisconsin-Madison have devised an approach that may help unlock the hidden shapes of alternate dimensions of the universe. A new study demonstrates that the shapes of extra dimensions can be "seen" by deciphering their influence on cosmic energy released by the violent birth of the universe 13 billion years ago.

The method, published Feb. 2 in Physical Review Letters, provides evidence that physicists can use experimental data to discern the nature of these elusive dimensions - the existence of which is a critical but as yet unproven element of string theory, the leading contender for a unified "theory of everything."

Scientists developed string theory, which proposes that everything in the universe is made of tiny, vibrating strings of energy, to encompass the physical principles of all objects from immense galaxies to subatomic particles. Though currently the front-runner to explain the framework of the cosmos, the theory remains, to date, untested.

The mathematics of string theory suggests that the world we know is not complete. In addition to our four familiar dimensions - three-dimensional space and time - string theory predicts the existence of six extra spatial dimensions, "hidden" dimensions curled in tiny geometric shapes at every single point in our universe.

Don't worry if you can't picture a 10-dimensional world. Our minds are accustomed to only three spatial dimensions and lack a frame of reference for the other six, says UW-Madison physicist Gary Shiu, who led the new study. Though scientists use computers to visualize what these six-dimensional geometries could look like (see image), no one really knows for sure what shape they take.

The new Wisconsin work may provide a long-sought foundation for measuring this previously immeasurable aspect of string theory.

According to string theory mathematics, the extra dimensions could adopt any of tens of thousands of possible shapes, each shape theoretically corresponding to its own universe with its own set of physical laws.

For our universe, "Nature picked one - and we want to know what that one looks like," explains Henry Tye, a physicist at Cornell University who was not involved in the new research.

Shiu says the many-dimensional shapes are far too small to see or measure through any usual means of observation, which makes testing this crucial aspect of string theory very difficult. "You can theorize anything, but you have to be able to show it with experiments," he says. "Now the problem is, how do we test it?"

He and graduate student Bret Underwood turned to the sky for inspiration.

Their approach is based on the idea that the six tiny dimensions had their strongest influence on the universe when it itself was a tiny speck of highly compressed matter and energy - that is, in the instant just after the big bang.

"Our idea was to go back in time and see what happened back then," says Shiu. "Of course, we couldn't really go back in time."

Lacking the requisite time machine, they used the next-best thing: a map of cosmic energy released from the big bang. The energy, captured by satellites such as NASA's Wilkinson Microwave Anisotropy Probe (WMAP), has persisted virtually unchanged for the last 13 billion years, making the energy map basically "a snapshot of the baby universe," Shiu says. The WMAP experiment is the successor to NASA's Cosmic Background Explorer (COBE) project, which garnered the 2006 Nobel Prize in physics.

Just as a shadow can give an idea of the shape of an object, the pattern of cosmic energy in the sky can give an indication of the shape of the other six dimensions present, Shiu explains.

To learn how to read telltale signs of the six-dimensional geometry from the cosmic map, they worked backward. Starting with two different types of mathematically simple geometries, called warped throats, they calculated the predicted energy map that would be seen in the universe described by each shape. When they compared the two maps, they found small but significant differences between them.

Their results show that specific patterns of cosmic energy can hold clues to the geometry of the six-dimensional shape - the first type of observable data to demonstrate such promise, says Tye.

Though the current data are not precise enough to compare their findings to our universe, upcoming experiments such as the European Space Agency's Planck satellite should have the sensitivity to detect subtle variations between different geometries, Shiu says.

"Our results with simple, well-understood shapes give proof of concept that the geometry of hidden dimensions can be deciphered from the pattern of cosmic energy," he says. "This provides a rare opportunity in which string theory can be tested."

Technological improvements to capture more detailed cosmic maps should help narrow down the possibilities and may allow scientists to crack the code of the cosmic energy map - and inch closer to identifying the single geometry that fits our universe.

The implications of such a possibility are profound, says Tye. "If this shape can be measured, it would also tell us that string theory is correct."

Related Links
University of Wisconsin-Madison
Stellar Chemistry, The Universe And All Within It
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Planck Satellite Shows Its Beauty
Cannes, France (SPX) Feb 05, 2007
Today, ESA's Planck satellite was on display for media gathered in Cannes. The press event took place by the facility of Alcatel Alenia Space, Prime Contractor for building the satellite. Special guest was George Smoot, Nobel Prize for Physics in 2006 for his research on the Cosmic Microwave background.







  • The Planetary Society Calls For Restoration Of Funds For NASA Science In 2008 Budget Request
  • A Spaceship For Sale On Ebay May Win Half A Million Dollars
  • US Astronaut Faces Attempted Murder Charge In Love Triangle Case
  • NASA Sets Out Tough Training To Reach For The Stars

  • Spirit Examines Churned-Up Martian Soil
  • Mars Express Camera Now In Its Third Year
  • Looking For Microbial Martians
  • Opportunity Making Its Way To Final Position On Cape Desire

  • Sea Launch Operations To Be Resumed Despite Liftoff Failure
  • JOULE II Launches With Success At Poker Flat
  • SpaceWorks Engineering Releases Study On Emerging Commercial Transport Services To ISS
  • Russia To Stop Spacecraft Launches From Far East In 2007

  • Google Earth To Blur Key India Sites
  • GeoEye Makes Final Debt Payment For The Purchase Of Space Imaging
  • Canada And US Launch Satellite Mapping Project Of North America
  • Brazilian Satellite Undergoes Environmental Tests

  • One Year Down, Eight to Go, On The Road to Pluto
  • NASA Spacecraft En Route To Pluto Prepares For Jupiter Encounter
  • Jupiter Encounter Begins For New Horizons Spacecraft On Route To Pluto
  • New Horizons in 2007

  • Universe Contains More Calcium Than Expected
  • Stardust Responds On First Command From Earth
  • High-Energy Relic Wind Reveals Past Behavior Of Dead Stars
  • In Search Of Hot Stuff Like Saturn

  • NASA Moon-Impactor Mission Passes Major Review
  • 181 Things To Do On The Moon
  • How SMART-1 Has Made European Space Exploration Smarter
  • The Moon Is A Harsh Witness

  • GPS Upgrade Will Require Complicated Choreography
  • China Puts New Navigation Satellite Into Orbit
  • Port Of Rotterdam To Use SAVI Networks Savitrak For Cargo Security And Management Service
  • GMV Signs Galileo Contracts Worth Over 40 Million Euros

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement