. 24/7 Space News .
Physicists 'Entangle' Light, Pave Way To Atomic-Scale Measurements

illustration only

Toronto (SPX) May 13, 2004
U of T physicists have developed a way to entangle photons which could ultimately lead to an extremely precise new measurement system. Their study appears in the May 13 issue of the journal Nature.

The findings could ultimately prove useful in developing ways to measure gravitational waves or the energy structure of atoms, and could also help in the development of "quantum computers." (Quantum computers work according to the principles of quantum mechanics, which describes atoms, photons, and other microscopic objects.)

Previous studies have theorized that quantum computers using entangled photons could perform calculations far more quickly than current computers. "We know that today's computers are approaching limits of size and speed," says lead author and post-doctoral fellow Morgan Mitchell.

"Quantum computing offers a possible way to move beyond that. Our research borrows some tricks from quantum computing and applies them to precision measurement."

Mitchell, working with Professor Aephraim Steinberg and graduate student Jeff Lundeen, first prepared three photons each with a different state of polarization.

The researchers directed one photon along a main pathway or "beam," then added a second photon. If researchers determined that both photons continued down the main beam, they concluded the two had become entangled. A third photon, with yet another polarization, was then added.

The team was able to create a three-photon state in 58 per cent of their attempts. "Nobody has taken three distinct photons and made a three-photon entangled state before," he says. The entire process occurred within nanoseconds over a physical span of less than a metre.

The researchers then demonstrated the use of the three-photon entangled state to make extremely precise measurements. To do so, they used an experiment based on a paradox associated with quantum mechanics, which suggests that a particle can be in two places at once.

By observing the movement of the photons past a series of mirrors and filters, the team was able to determine how far the photons had traveled.

Because the team used photons in a three-photon state, the system could provide measurements that were three times as precise as those made by a single photon.

Since the new system, in theory, could incorporate an even larger number of photons, it could someday lead to a measurement system with significantly greater accuracy than anything that currently exists. The next step could be a practical test involving a measurement, says Mitchell.

Related Links
University of Toronto
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Sharing Secrets Via Teleportation
Canberra (SPX) May 13, 2004
Spy networks and international financial systems are set to benefit from a significant advance in teleportation technology developed at The Australian National University.







  • Orbital Recovery Signs Arianespace Deal For ConeXpress "Space Tug'
  • New Mexico Banking On Space
  • New Mexico Banking On Space
  • A New 'Constellation' At NASA

  • Bringing Mars Back Home
  • Mars Express Reports In As Final Deployment Delayed
  • Deep Sleep Gives Opportunity Energy To Cruise Crater Endurance
  • Deep Faults And Disrupted Crater At Acheron Fossae

  • Arianespace To Launch Aussie Satellite On First Soyuz From Europe's Kourou Spaceport
  • ILS Adds 5th Americom Satellite to 2004 Launch Schedule
  • Intelsat to Purchase Atlas V Launch Vehicle From ILS
  • Sea Launch Updates Lift Off Time For May 4 Launch

  • Earth, Sky Tapped In Unique Global Climate Change Study
  • Drought Signals Severe Fire Season In The US
  • New Interpretation Of Satellite Data Supports Global Warming
  • Global Warming's Dollar Effects

  • Hubble Fails To Spot Suspected Sedna Moon
  • Life Beneath The Ice In The Outer Solar System?
  • Gravity Rules: The Nature of Planethood
  • Enigma Of Uranus Solved At Last

  • China's Lunar Probe Will Launch On Long March 3A
  • Cornell Astronomer Explains To Congress The Economics Of Lunar Water Supplies
  • Arizona Planetary Scientists Call For Lunar Exploration
  • Smart-1 Eclipse Period Over

  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base
  • Lunar Convoys As An Option For A Return To The Moon
  • NASA Planning Steps To Moon, Mars

  • Stanford Engineers Create GPS Steering
  • Trimble and u-Nav To Develop Next Level of GPS for Portable Electronics
  • Trimble R7 Tracks New Block IIR-M GPS Satellite Before Launch
  • XM Radio Introduces Satellite Update Service For Vehicle Navigation

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement