. 24/7 Space News .
TIME AND SPACE
Physicist offers leading theory about mysterious Large Hadron Collider excess
by Staff Writers
Lawrence KS (SPX) Jul 29, 2016


File image.

In December of last year, scientists at the Large Hadron Collider in Europe announced startling results hinting at the existence of an undiscovered subatomic particle - one with a mass six times heavier than the Higgs boson, the particle that made Physicist offers leading theory about mysterious Large Hadron Collider excesss in 2012.

The evidence is still thin, but if more data confirm the finding, it could sharpen humankind's understanding of the building blocks of the universe.

"This was a very surprising announcement and a puzzle at the same time, because the lifetime and mass of the particle could reveal something else beyond simply one extra particle, if it turns out to be a real signal," said Kyoungchul "K.C." Kong, associate professor of physics and astronomy at the University of Kansas. "Yet we do not claim this as a discovery, and we need more data."

Based on the LHC findings, theoretical physicists around the world rushed to offer ideas that could explain the mystery signal and guide further experimentation. Physical Review Letters, the leading peer-reviewed journal in the field, received hundreds of papers purporting to illuminate the LHC results.

"We explore ideas," Kong said of theoretical particle physicists. "Probably most of ideas are wrong - but we learn from them, and we propose better ideas."

Of the mountain of papers tendered to Physical Review Letters about the LHC findings, the journal chose to publish only four - including one co-authored by Kong, who had the original idea behind the submission.

The KU physicist said the enigmatic signal, detected at 750 giga-electron volts, or GeV, suggests "the first hint for new particles beyond the Standard Model." (The Standard Model of particle physics is a longstanding theory used to explain the forces and subatomic particles working in atoms that constitute all known matter in the universe.)

He said, "Every explanation of the 750 GeV excess needs a new particle. Most models assume one around 750 GeV."

But Kong's idea is different than most. Rather than basing his theory on the existence of a "resonance" particle with a straightforwardly corresponding mass to trigger the 750 GeV signal, Kong's paper proposes a sequence of particles at different masses, without one at 750 GeV.

"I was participating in a workshop in Korea, back in December 2015, when there was an announcement on this excess," Kong said. "Everyone was considering a resonance particle, which would have been my first choice. I wanted to interpret this differently and talked to some friends in the workshop, and proposed non-resonance interpretation."

The KU physicist said his concept depends upon a "sequential cascade decay" of a heavier particle into photons that can "fake the resonance signal" at 750 GeV.

Whether he is proven correct remains to be seen, but the promotion of his bold idea in the respected journal is extraordinary to colleagues at KU.

"Fundamental physics discoveries often take years, decades (see under Higgs) or even centuries (see under gravitational waves) to be confirmed," said Hume Feldman, professor and chair of the KU Department of Physics and Astronomy. "However, it is certainly a great honor for KU to have our research published in such a high-impact venue and chosen out of literally hundreds of entries from all over the world and from the most prestigious institutes in the world."

Another paper that proposes a different mechanism to explain the observation was written by KU Foundation Professor Christophe Royon and subsequently accepted by PRL. Assistant Professor Ian Lewis also has written a paper on the subject.

"The fact that independent KU papers were accepted by PRL out of the hundreds submitted is another testament to the high-quality research done at the Department of Physics and Astronomy," Feldman said.

Kong's co-authors were Won Sang Cho, Myeonghun Park and Sung Hak Lim of the Institute for Basic Science in Korea; Doojin Kim and Konstantin T. Matchev of the University of Florida; and Jong-Chul Park of Korea's Chungnam National University.

Currently, Kong is attending a workshop at CERN, the European nuclear agency that operates the LHC. There, his work on the puzzling results will continue.

"Theorists propose ideas, and experimentalists perform experiments to test the ideas, then publish their results - and we try to understand," he said.

Other KU faculty working at the LHC include KU's Distinguished Professor Alice Bean and professors Graham Wilson and Philip Baringer, as well as students and postdoctoral researchers.

An update on the 750 GeV excess will be presented at a conference in Chicago next week, Aug. 3-10.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Kansas
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Unconventional quasiparticles predicted in conventional crystals
Princeton NJ (SPX) Jul 22, 2016
An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles - which belong to the class of particles known as fermions - can be distinguished by several intrinsic properties, such as their responses to applied magnetic and electric fields. In several cases, fermions in the interior of the material show thei ... read more


TIME AND SPACE
Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Taiwan to make lunar lander for NASA moon-mining mission

TIME AND SPACE
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

TIME AND SPACE
Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

Sensor Technology Could Revolutionize What You Sleep On

TIME AND SPACE
China commissions space tracking ship as new station readied

China's second space lab Tiangong-2 reaches launch center

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

TIME AND SPACE
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

TIME AND SPACE
Commission approves acquisition of Arianespace by ASL, subject to conditions

SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

SpaceX propels cargo to space station, lands rocket

TIME AND SPACE
First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

Surface Composition Determines Planet's Temperature and Habitability

Gemini Observatory Instrumental in Latest Exoplanet Harvest

TIME AND SPACE
Safran gets $304 million Laser Target Module Locator II Army contract

Thales to modernize German army simulators

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

Active tracking of astronaut rad-exposures targeted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.