Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Greenhouse gas emissions of cars could drop 80 percent by 2050
by Staff Writers
Washington DC (SPX) Mar 25, 2013


Improving the efficiency of conventional vehicles is, up to a point, the most economical and easiest-to-implement approach to saving fuel and lowering emissions, the report says.

A new National Research Council report finds that by the year 2050, the U.S. may be able to reduce petroleum consumption and greenhouse gas emissions by 80 percent for light-duty vehicles - cars and small trucks - via a combination of more efficient vehicles; the use of alternative fuels like biofuels, electricity, and hydrogen; and strong government policies to overcome high costs and influence consumer choices.

While achieving these goals will be difficult, improving technologies driven by strong and effective policies could make deep reductions possible.

"To reach the 2050 goals for reducing petroleum use and greenhouse gases, vehicles must become dramatically more efficient, regardless of how they are powered," said Douglas M. Chapin, principal of MPR Associates, and chair of the committee that wrote the report.

"In addition, alternative fuels to petroleum must be readily available, cost-effective and produced with low emissions of greenhouse gases. Such a transition will be costly and require several decades.

"The committee's model calculations, while exploratory and highly uncertain, indicate that the benefits of making the transition, i.e. energy cost savings, improved vehicle technologies, and reductions in petroleum use and greenhouse gas emissions, exceed the additional costs of the transition over and above what the market is willing to do voluntarily."

Improving the efficiency of conventional vehicles is, up to a point, the most economical and easiest-to-implement approach to saving fuel and lowering emissions, the report says. This approach includes reducing work the engine must perform - reducing vehicle weight, aerodynamic resistance, rolling resistance, and accessories - plus improving the efficiency of the internal combustion engine powertrain.

Improved efficiency alone will not meet the 2050 goals, however. The average fuel economy of vehicles on the road would have to exceed 180 mpg, which, the report says, is extremely unlikely with current technologies. Therefore, the study committee also considered other alternatives for vehicles and fuels, including:

+ hybrid electric vehicles, such as the Toyota Prius;

+ plug-in hybrid electric vehicles, such as the Chevrolet Volt;

+ battery electric vehicles, such as the Nissan Leaf;

+ hydrogen fuel cell electric vehicles, such as the Mercedes F-Cell, scheduled to be introduced about 2014; and

+ compressed natural gas vehicles, such as the Honda Civic Natural Gas.

Although driving costs per mile will be lower, especially for vehicles powered by natural gas or electricity, the high initial purchase cost is likely to be a significant barrier to widespread consumer acceptance, the report says. All the vehicles considered are and will continue to be several thousand dollars more expensive than today's conventional vehicles.

Additionally, particularly in the early years, the report predicts that alternative vehicles will likely be limited to a few body styles and sizes; some will rely on fuels that are not readily available or have restricted travel range; and others may require bulky energy storage that will limit their cargo and passenger capacity.

Wide consumer acceptance is essential, however, and large numbers of alternative vehicles must be purchased long before 2050 if the on-road fleet is to meet desired performance goals. Strong policies and technology advances are critical in overcoming this challenge.

The report identified several scenarios that could meet the more demanding 2050 greenhouse gas goal. Each combines highly efficient vehicles with at least one of three alternative power sources - biofuel, electricity, or hydrogen. Natural gas vehicles were considered, but their greenhouse gas emissions are too high for the 2050 goal. However, if the costs of these vehicles can be reduced and appropriate refueling infrastructure created, they have great potential for reducing petroleum consumption.

While corn-grain ethanol and biodiesel are the only biofuels to have been produced in commercial quantities in the U.S. to date, the study committee found much greater potential in biofuels made from lignocellulosic biomass - which includes crop residues like wheat straw, switchgrass, whole trees, and wood waste.

This "drop-in" fuel is designed to be a direct replacement for gasoline and could lead to large reductions in both petroleum use and greenhouse gas emissions; it can also be introduced without major changes in fuel delivery infrastructure or vehicles. The report finds that sufficient lignocellulosic biomass could be produced by 2050 to meet the goal of an 80 percent reduction in petroleum use when combined with highly efficient vehicles.

Vehicles powered by electricity will not emit any greenhouse gases, but the production of electricity and the additional load on the electric power grid are factors that must be considered. To the extent that fossil resources are used to generate electricity, the report says that the successful implementation of carbon capture and storage will be essential.

These vehicles also rely on batteries, which are projected to drop steeply in price. However, the report says that limited range and long recharge times are likely to limit the use of all-electric vehicles mainly to local driving. Advanced battery technologies under development all face serious technical challenges.

When hydrogen is used as a fuel cell in electric vehicles, the only vehicle emission is water. However, varying amounts of greenhouse gases are emitted during hydrogen production, and the low-greenhouse gas methods of making hydrogen are more expensive and will need further development to become competitive.

Hydrogen fuel cell vehicles could become less costly than the advanced internal combustion engine vehicles of 2050. Fuel cell vehicles are not subject to the limitations of battery vehicles, but developing a hydrogen infrastructure in concert with a growing number of fuel cell vehicles will be difficult and expensive, the report says.

The technology advances required to meet the 2050 goals are challenging and not assured. Nevertheless, the committee considers that dramatic cost reduction and overall performance enhancement is possible without unpredictable technology breakthroughs. Achieving these goals requires that the improved technology focus on reducing fuel use rather than adding greater power or weight, the report says.

It is impossible to know which technologies will ultimately succeed, the report says, because all involve uncertainty. The best approach, therefore, is to promote a portfolio of vehicle and fuel research and development, supported by both government and industry, designed to solve the critical challenges in each major candidate technology. Such primary research efforts need continuing evaluation of progress against performance goals to determine which technologies, fuels, designs, and production methods are emerging as the most promising and cost-effective.

Overcoming the barriers to advanced vehicles and fuels will require a rigorous policy framework that is more stringent than the proposed fuel economy standards for 2025. This policy intervention could include high and increasing fuel economy standards, R and D support, subsidies, and public information programs aimed at improving consumers' familiarity with the new fuels and powertrains. Because of the high level of uncertainty in the pace and scale of technology advances, this framework should be modified as technologies develop and as conditions change.

It is essential that policies promoting particular technologies to the public are not introduced before these new fuels and vehicle technologies are close to market readiness, and consumer behavior toward them is well understood. The report warns that forcing a technology into the market should be undertaken only when the benefits of the proposed support justify its costs.

.


Related Links
National Academy of Sciences
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Natural gas considered for trucking fuel
Washington (UPI) Mar 22, 2013
Amid the nation's shale gas boom, natural gas is being considered as an alternative to diesel to fuel heavy trucks. The "Blueprint for a Clean and Secure Energy Future" unveiled by U.S. President Barack Obama last week calls for "putting in place new incentives" for medium- and heavy-duty trucks that run on natural gas or other alternative fuels and providing a credit for 50 percent of ... read more


ENERGY TECH
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

ENERGY TECH
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

ENERGY TECH
Lockheed Martin to Continue Providing Life Sciences Support To NASA

U.S. Astronomers Call on Congress to Support R and D Investments

NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

ENERGY TECH
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

ENERGY TECH
New Space Station Crew Members to Launch and Dock the Same Day

ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

ENERGY TECH
Dragon capsule to spend extra day in space

Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

ENERGY TECH
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

ENERGY TECH
Record simulations conducted on Lawrence Livermore supercomputer

Breakthrough research shows chemical reaction in real time

Mainz scientists create new flexible mineral inspired by deep-sea sponges

NTU scientist develops a multi-purpose wonder material to tackle environmental challenges




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement