. 24/7 Space News .
SPACE MEDICINE
'Pee power' turns urine into sustainable power source for electronic devices
by Staff Writers
Bath, UK (SPX) Apr 22, 2016


(Left to right): Ph.D. student Jon Chouler; Senior Lecturer in the Department of Chemical Engineering, Dr. Mirella Di Lorenzo; Senior Lecturer in the Department of Chemistry, Dr. Petra Cameron. Image courtesy Tim Gander. For a larger version of this image please go here.

Researchers at the University of Bath have developed an innovative miniature fuel cell that can generate electricity from urine, creating an affordable, renewable and carbon-neutral way of generating power.

In the near future this device could provide a means of generating much needed electricity to remote areas at very little cost, each device costs just Pounds 1- Pounds 2. With growing global pressures to reduce reliance on fossil fuels and the associated greenhouse gas emissions, microbial fuel cells could be an exciting alternative.

A microbial fuel cell is a device that uses natural biological processes of 'electric' bacteria to turn organic matter, such as urine, into electricity. These fuel cells are efficient and relatively cheap to run, and produce nearly zero waste compared to other methods of electricity generation.

In practice, urine will pass through the microbial fuel cell for the reaction to happen. From here, electricity is generated by the bacteria which can then be stored or used to directly power electrical devices.

The research team from the University's Department of Chemical Engineering, Department of Chemistry and the Centre for Sustainable Chemical Technologies (CSCT), have worked with Queen Mary University of London and the Bristol Bioenergy Centre, to devise this new kind of microbial fuel cell that is smaller, more powerful and cheaper than other similar devices.

This novel fuel cell developed by the researchers, measures one inch squared in size and uses a carbon catalyst at the cathode which is derived from glucose and ovalbumin, a protein found in egg white. This biomass-derived catalyst is a renewable and much cheaper alternative to platinum, commonly used in other microbial fuel cells.

The researchers worked on the cell's design to maximize the power that could be generated. By increasing the cell's electrodes from 4mm to 8mm, the power output was increased tenfold. Furthermore, by stacking multiple units together, the power was proportionally increased.

Currently, a single microbial fuel cell can generate 2 Watts per cubic metre, enough to power a device such as a mobile phone. Whilst this value is not comparable with other alternative technologies such as hydrogen or solar fuel cells and other methods of bioenergy digesters, the significant advantage of this technology is its extremely cheap production cost and its use of waste as a fuel, a fuel that will never run out and does not produce harmful gasses.

The research team is now looking at ways of improving the power output of the microbial fuel cell and is confident that by optimising the design of the cell, they will be able to increase the cell's performance.

Lecturer in the University of Bath's Department of Chemical Engineering and corresponding author, Dr Mirella Di Lorenzo, said: "If we can harness the potential power of this human waste, we could revolutionise how electricity is generated.

"Microbial fuel cells can play an important role in addressing the triple challenge of finding solutions that support secure, affordable, and environmentally sensitive energy, known as the 'energy trilemma'.

"There is no single solution to this 'energy trilemma' apart from taking full advantage of available indigenous resources, which include urine."

Lead author and CSCT PhD student, Jon Chouler said: "Microbial fuel cells could be a great source of energy in developing countries, particularly in impoverished and rural areas.

"To have created technology that can potentially transform the lives of poor people who don't have access to, or cannot afford electricity, is an exciting prospect. I hope this will enable those in need to enjoy a better quality of life as a result of our research."

Head of the Department of Chemical Engineering and Co-Director of CSCT, Dr Tim Mays, added: "Renewable 'pee-power' is a brilliant idea and its use in developing countries will have huge positive impact on people's lives in areas of energy poverty. Dr Mirella Di Lorenzo, her PhD student Jon Chouler and their research collaborators must be congratulated on the innovative science and engineering that has led to this exciting development."

The full research paper 'Towards effective small scale microbial fuel cells for energy generation from urine' published in Electrochimica Acta can be viewed online here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bath
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE MEDICINE
Two doctoral students work on NASA mission
Los Angeles CA (SPX) Apr 18, 2016
Although men often outnumber women in science fields, women comprise the majority of a USC-led team that is the first in the world to seek therapeutic drug discovery from fungi launched into space. USC School of Pharmacy doctoral students Jillian Romsdahl, 25, and Adriana Blachowicz, 26, were overjoyed to send Aspergillus nidulans to the International Space Station on April 8. They had wor ... read more


SPACE MEDICINE
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

SPACE MEDICINE
Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

SPACE MEDICINE
NASA blasts Orion Service Module with giant horns

Concept's success buoys Commercial Crew's path to flight

New, fast solar wind propulsion system is aim of NASA, UAH study

China, India pave the way to BRICS cooperation in space

SPACE MEDICINE
Chinese scientists develop mammal embryos in space for first time

Re-entry capsule of SJ-10 lands in Northern China

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

SPACE MEDICINE
BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

SPACE MEDICINE
Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

SPACE MEDICINE
Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

SPACE MEDICINE
Thanks, actin, for the memories

Generation of tailored magnetic materials

Using methane rather than flaring it

Progress of simulating dynamics in heterogeneous materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.