. 24/7 Space News .
Paramecia Adapt Their Swimming to Changing Gravitational Force

Effectively stalling the paramecia.
by Staff Writers
Providence RI (SPX) Sep 20, 2006
Using a high-powered electromagnet, Brown University physicists Karine Guevorkian and James Valles have created a topsy-turvy world for the single-celled paramecium. They have managed to increase, eliminate and even reverse the effects of gravity on the tiny protozoan, changing its swimming behavior and indirectly measuring its swimming force.

For many single-celled organisms living in water, the force is always against them. The classic example is the slipper-shaped paramecium, which consistently swims harder going up than going down, just to keep from sinking. Now physicists Karine Guevorkian and James Valles of Brown University have worked out a way to turn gravity on its head and see how the creatures respond.

The researchers placed a vial with pond water and live paramecia inside a high-powered electromagnet at the National High Magnetic Field Laboratory in Tallahassee, Fla. The organisms are less susceptible to a magnetic field than plain water is, so the magnetic field generated inside the vial "pulls" harder on the water than on the cells. If the field is pulling down, the cells float. If it's pulling up, they sink.

Using water alone, Valles and Guevorkian were able to increase the effect of gravity by about 50 percent. To increase the effect even further, they added a compound called Gadolinium-diethylene-triamine-pentaacetate (Gd-DTPA) to the water. Gd-DPTA is highly susceptible to induced magnetic fields such as those generated in electromagnets. This allowed the researchers to make the water much "heavier" or "lighter," relative to the paramecia, achieving an effect up to 10 times that of normal gravity. The magnetic field is continuously adjustable, so Valles and Guevorkian were also able to create conditions simulating zero-gravity and inverse-gravity.

By dialing the magnetic field up or down, the researchers could change the swimming behavior of the paramecia dramatically. In high gravity, the organisms swam upward mightily to maintain their place in the water column. In zero gravity, they swam up and down equally. And in reverse gravity, they dove for where the sediments ought to be.

"If you want to make something float more," said Valles, "you put it in a fluid and you pull the fluid down harder than you pull the thing down. And that's what we basically do with the magnet. That causes the cell to float more - and that turns gravity upside down for the cell."

Cranking the field intensity even higher, Valles and Guevorkian could test the limits of protozoan endurance. At about eight times normal gravity, the little swimmers stalled, swimming upward, but making no progress. At this break-even point, the physicists could measure the force needed to counter the gravitational effect: 0.7 nano-Newtons. For comparison, the force required to press a key on a computer keyboard is about 22 Newtons or more than 3 billion times as strong.

Space-based research has demonstrated many puzzling biological effects related to reduced gravity, such as changes in bone cell development and gene expression. But methods for manipulating gravity in the Earth-based laboratory have been few and troublesome, hindering further research in these areas. This new method will allow researchers to subject small biological systems to gravitational effects similar to those encountered in space, allowing less expensive and more complex experiments on the biological response to altered gravity.

Related Links
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Gravitational Wave Detector Is Operational
Hanover, Germany (UPI) Jun 28, 2006
The joint German-British Gravitational Wave Detector GEO600 has started an 18-month run of continuous measurement of gravitational waves. Researchers say they are optimistic they will be able to observe the never before seen phenomena that is one of the great untested predictions of Einstein's General Theory of Relativity.







  • Iran Daily Attacks Coverage Of 'Rich Iranian' In Space
  • Mars mission Risk 29: Radiation-Induced Brain Damage
  • Ansari Hopes Space Travel Will Increase Respect For Earth Environment
  • Soyuz Rocket Raised Into Position For Monday Launch

  • Northrop Grumman-Built Antenna Deploys To Seek Water Under Mars
  • NASA Rover Nears Martian Bowl Goal
  • Opportunity High Tails It To Victoria Via A Rock At Emma Dean Crater
  • The Martian Sun Also Rises As Winter Retreats

  • Arianespace CEO Calls For New Pricing Regime
  • LM Announces Sale Of Its Interests In International Launch Services And LKEI
  • Call For Fair Pricing Policies In The Commercial Launch Services Industry
  • Eutelsat Confirms Sea Launch Agreements For 2008-9

  • Raytheon Completes NPOESS Segment Acceptance Testing Ahead of Schedule
  • Envisat Symposium 2007 Highlights EO Satellite Achievements
  • GeoEye Approved For Listing On The Nasdaq Global Market
  • Scientists Sketch City In Geocyberspace

  • Dwarf Planet That Caused Huge Row Gets An Appropriate Name
  • Pluto Gets A Six Digit Number
  • Myriad Planets In Our Solar System And Copernicus Smiled
  • CSEPR Examines Movement To Set Aside IAU Planet Definition Ruling

  • New Evidence Links Stellar Remains To Oldest Recorded Supernova
  • Astronomers Trace The Evolution Of The First Galaxies In The Universe
  • Scientists Detect New Kind Of Cosmic Explosion
  • The Eternal Life Of Stardust Portrayed In New NASA Image

  • New Lunar Meteorite Found In Antarctica
  • Russia And China Could Sign Moon Exploration Pact In 2006
  • SMART-1 Impact Simulated In A Laboratory Sand-Box
  • Smart-1 Impact Flash And Debris: Crash Scene Investigation

  • SSC Gets Galileo RF License Until 2037
  • Launch Of Second Galileo Test Satellite Delayed Until 2007
  • Topcon Launches All-New Robotic Surveyor Assistant
  • South Korea And EU Sign Galileo Satellite Cooperation Agreement

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement