. 24/7 Space News .
EARLY EARTH
One single primitive turtle resisted mass extinction in the northern hemisphere
by Staff Writers
Madrid, Spain (SPX) Feb 04, 2020

This is a reconstruction of Laurasichersis relicta which lived in the northen hemisphere 66 millons years ago.

Sixty-six million years ago, in the emerged lands of Laurasia -now the northern hemisphere- a primitive land tortoise, measuring about 60 cm, managed to survive the event that killed the dinosaurs. It was the only one to do so in this area of the world, according to a Spanish palaeontologist who has analysed its peculiar fossils, found in France.

All turtle species we know of today are descendants of two lineages that separated during the Jurassic, more than 160 million years ago. But their members were not the only ones that existed. There had been many groups of primitive tortoises before them, in an earlier evolutionary position.

Some of these ancient reptiles managed to survive at a time when dinosaurs dominated the Earth. However, virtually all of the early groups of turtles disappeared after an asteroid impact that took place 66 million years and wiped out 70% of life on the planet.

Only the so-called "horned turtles" or meiolaniids managed to hold out, more specifically in Gondwana, the current southern hemisphere, according to fossils found in Oceania and South America. Their last representatives managed to co-exist relatively recently with humans, who hunted them to extinction. No other primitive turtle had appeared in the records of the last 66 million years.

After 10 years of study, the palaeontologist Adan Perez Garcia, from the Evolutionary Biology Group of the National University of Distance Education (UNED, Spain), now confirms that, in the northern hemisphere, on the ancient continent called Laurasia, a primitive land turtle also survived the mass extinction of the late Cretaceous period.

This was Laurasichersis relicta, an extinct turtle genus and species that corresponds to a new form, with very peculiar anatomical characteristics, and whose lineage evolved independently from that of the Gondwana tortoises, from which it separated 100 million years earlier.

"The reason why Laurasichersis survived the great extinction, while none of the other primitive North American, European or Asian land turtles managed to do so, remains a mystery," Perez Garcia, the sole author of the paper published in Scientific Reports magazine, has confided to Sinc.

A drastic change after extinction
The impact of the asteroid plunged the Earth into a spiral of gas emissions, molten material and acid rain that caused a sudden warming of the climate and transformed the landscapes in which the turtles lived.

"The fauna of European turtles underwent a radical change: most of the forms that inhabited this continent before the extinction disappeared, and their role in many ecosystems was left vacant until the relatively rapid arrival of new groups from various places in North America, Africa and Asia," the palaeontologist points out.

All of them, identified in these new ecosystems, seemed to belong to the two lineages that have persisted to this day, but the new study allows us to recognize that they were not alone. The appearance in a site in northeastern France of fossils of the shell, limbs and skull of Laurasichersis relicta shows that this primitive species also survived the mass extinction event in Laurasia.

However, its origin stems from another continent: "It is the last representative of a group previously identified in China and Mongolia, where it was known since the Jurassic, more than 100 million years before the new European Laurasichersis turtle existed. This group arrived on this continent very shortly after the end of the Mesozoic, 66 million years ago," says the researcher.

A special turtle
The shell of the newly discovered turtle was just over 60 cm long during adulthood and, like other primitive reptiles, it could not retract its neck into its shell to conceal its head from predators. This physical limitation allowed it to develop other protective mechanisms such as an armor with large, mutually linked spikes, which were hard structures located on the neck, legs and tail.

Its peculiar shell is one of the most remarkable features of this reptile and one of the characteristics that make it unique. This complex structure was made up of numerous plates. "Although the number of plates is usually the same in most turtles, the ventral shell region of the new species was provided with a greater number of these elements than those known in any other turtle," Perez Garcia stresses.

After the 10-km-diameter meteorite hit the Earth, the large dinosaurs ceased to be part of the landscape, but the turtle, which lived in humid environments with forest areas, coexisted with new predators. The latter quickly dominated the positions of the food chain that had remained available when most animals disappeared.

Research Report: "Surviving the cretaceouspaleogene mass extinction event: A terrestrial stem turtle in the cenozoic of Laurasia"


Related Links
FECYT - SPANISH FOUNDATION FOR SCIENCE AND TECHNOLOGY
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
How and when spines changed in mammalian evolution
Boston MA (SPX) Feb 04, 2020
A new study from Harvard University and the Field Museum of Natural History sheds light on how and when changes in the spine happened in mammal evolution. The research reveals how a combination of developmental changes and adaptive pressures in the spines of synapsids, the extinct forerunners of mammals, laid the groundwork for the diversity of backbones seen in mammals today. By comparing the biomechanics of two modern animals, cat and lizard, and CT scans of synapsid fossils, the researchers ove ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
ISRO's Gaganyaan to facilitate space tourism

Getting around the Solar System

DLR 2020 - research for climate, mobility and the energy transition

New research launching to station aboard Northrop Grumman's 13th Resupply Mission

EARLY EARTH
Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

Elon Musk drops surprise techno track

SpaceX Falcon 9 launches fourth batch of 60 Starlink satellites

EARLY EARTH
MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

EARLY EARTH
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

EARLY EARTH
OneWeb lifts off: Next batch ready to launch

Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

US sees record year for private space sector in 2020

EARLY EARTH
UNH researchers find clues to how hazardous space radiation begins

Can wood construction transform cities from carbon source to carbon vault

Sustainable 3D-printed super magnets

"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland

EARLY EARTH
To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

For hottest planet, a major meltdown, study shows

EARLY EARTH
Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.