Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



SHAKE AND BLOW
Old Faithful's geological heart revealed
by Staff Writers
Salt Lake City UT (SPX) Oct 09, 2017


illustration only

Old Faithful is Yellowstone National Park's most famous landmark. Millions of visitors come to the park every year to see the geyser erupt every 44-125 minutes. But despite Old Faithful's fame, relatively little was known about the geologic anatomy of the structure and the fluid pathways that fuel the geyser below the surface. Until now.

University of Utah scientists have mapped the near-surface geology around Old Faithful, revealing the reservoir of heated water that feeds the geyser's surface vent and how the ground shaking behaves in between eruptions. The map was made possible by a dense network of portable seismographs and by new seismic analysis techniques. The results are published in Geophysical Research Letters. Doctoral student Sin-Mei Wu is the first author.

For Robert Smith, a long-time Yellowstone researcher and distinguished research professor of geology and geophysics, the study is the culmination of more than a decade of planning and comes as he celebrates his 60th year working in America's first national park.

"Here's the iconic geyser of Yellowstone," Smith says. "It's known around the world, but the complete geologic plumbing of Yellowstone's Upper Geyser Basin has not been mapped nor have we studied how the timing of eruptions is related to precursor ground tremors before eruptions."

Small seismometers
Old Faithful is an iconic example of a hydrothermal feature, and particularly of the features in Yellowstone National Park, which is underlain by two active magma reservoirs at depths of 5 to 40 km depth that provide heat to the overlying near-surface groundwater. In some places within Yellowstone, the hot water manifests itself in pools and springs. In others, it takes the form of explosive geysers.

Dozens of structures surround Old Faithful, including hotels, a gift shop and a visitor's center. Some of these buildings, the Park Service has found, are built over thermal features that result in excessive heat beneath the built environment. As part of their plan to manage the Old Faithful area, the Park Service asked University of Utah scientists to conduct a geologic survey of the area around the geyser.

For years, study co-authors Jamie Farrell and Fan-Chi Lin, along with Smith, have worked to characterize the magma reservoirs deep beneath Yellowstone. Although geologists can use seismic data from large earthquakes to see features deep in the earth, the shallow subsurface geology of the park has remained a mystery, because mapping it out would require capturing everyday miniature ground movement and seismic energy on a much smaller scale. "We try to use continuous ground shaking produced by humans, cars, wind, water and Yellowstone's hydrothermal boilings and convert it into our signal," Lin says. "We can extract a useful signal from the ambient background ground vibration."

To date, the University of Utah has placed 30 permanent seismometers around the park to record ground shaking and monitor for earthquakes and volcanic events. The cost of these seismometers, however, can easily exceed $10,000. Small seismometers, developed by Fairfield Nodal for the oil and gas industry, reduce the cost to less than $2,000 per unit. They're small white canisters about six inches high and are totally autonomous and self-contained. "You just take it out and stick it in the ground," Smith says.

In 2015, with the new instruments, the Utah team deployed 133 seismometers in the Old Faithful and Geyser Hill areas for a two-week campaign.

The sensors picked up bursts of intense seismic tremors around Old Faithful, about 60 minutes long, separated by about 30 minutes of quiet. When Farrell presents these patterns, he often asks audiences at what point they think the eruption of Old Faithful takes place. Surprisingly, it's not at the peak of shaking. It's at the end, just before everything goes quiet again.

After an eruption, the geyser's reservoir fills again with hot water, Farrell explains. "As that cavity fills up, you have a lot of hot pressurized bubbles," he says. "When they come up, they cool off really rapidly and they collapse and implode." The energy released by those implosions causes the tremors leading up to an eruption.

One scientist's noise is another scientist's signal
Typically, researchers create a seismic signal by swinging a hammer onto a metal plate on the ground. Lin and Wu developed the computational tools that would help find useful signals among the seismic noise without disturbing the sensitive environment in the Upper Geyser Basin. Wu says she was able to use the hydrothermal features themselves as a seismic source, to study how seismic energy propagates by correlating signals recorded at the sensor close to a persistent source to other sensors. "It's amazing that you can use the hydrothermal source to observe the structure here," she says.

When analyzing data from the seismic sensors, the researchers noticed that tremor signals from Old Faithful were not reaching the western boardwalk. Seismic waves extracted from another hydrothermal feature in the north slowed down and scattered significantly in nearly the same area suggesting somewhere west of Old Faithful was an underground feature that affects the seismic waves in an anomalous way. With a dense network of seismometers, the team could determine the shape, size, and location of the feature, which they believe is Old Faithful's hydrothermal reservoir.

Wu estimates that the reservoir, a network of cracks and fractures through which water flows, has a diameter of around 200 meters, a little larger than the University of Utah's Rice-Eccles Stadium, and can hold approximately 300,000 cubic meters of water, or more than 79 million gallons. By comparison, each eruption of Old Faithful releases around 30 m3 of water, or nearly 8,000 gallons. "Although it's a rough estimation, we were surprised that it was so large," Wu says.

Further work
The team is far from done answering questions about Yellowstone. They returned for another seismic survey in November 2016 and are planning their 2017 deployment, to begin after the park roads close for the winter.

Wu is looking at how air temperature might change the subsurface structure and affect the propagation of seismic waves. Farrell is using the team's seismic data to predict how earthquake waves might reverberate through the region.

Smith is looking forward to conducting similar analysis in Norris Geyser Basin, the hottest geothermal area of the park. Lin says that the University of Utah's research program in Yellowstone owes much to Smith's decades-long relationship with the park, enabling new discoveries.

"You need new techniques," Lin says, "but also those long-term relationships."

Research paper

SHAKE AND BLOW
New study analyzes volcanic fatalities in more detail than ever before
Bristol UK (SPX) Oct 09, 2017
It is hoped the findings, published recently in the Journal of Applied Volcanology, will help increase our understanding of volcanic hazards and the subsequent threat to life. A tenth of the world's population lives within the potential footprint of volcanic hazards with more than 800 million people living within 100 km of active volcanoes. Between 1500 and 2017 more than 278,000 peo ... read more

Related Links
University of Utah
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
OECD calls for tourism to be more sustainable

Fast-moving space industries create new ethical challenges

Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

SHAKE AND BLOW
Arianespace to launch COSMO-SkyMed satellites manufactured by Thales

New Zealand opens first rocket launch site

Arianespace signs contract for 10 Vega and Vega C launchers

Launch Vehicle and Missile Ascent Trajectories

SHAKE AND BLOW
Lockheed Martin Reveals New Details to its Mars Base Camp Vision

Lockheed Martin unveils reusable water-powered Mars lander

SpaceX's Musk unveils plan to reach Mars by 2022

Research sheds new light on how Earth and Mars were created

SHAKE AND BLOW
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

SHAKE AND BLOW
GomSpace and Luxembourg to develop space activities in the Grand Duchy

Spacepath Communications Acquires Tango Wave

Brodeur Partners Launches Entrepreneurial Space Group

SSL-Built Satellite for AsiaSat Begins Post-Launch Maneuvers According to Plan

SHAKE AND BLOW
Microlasers get a performance boost from a bit of gold

Atomistic simulations go the distance on metal strength

Surfactants have surprising effect on nanobubble stability

Teleoperating robots with virtual reality

SHAKE AND BLOW
MATISSE to Shed Light on the Formation of Earth and Planets

Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

SHAKE AND BLOW
Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement