Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
Oklahoma earthquakes linked to oil and gas drilling
by Staff Writers
Stanford CA (SPX) Jun 22, 2015


Large volumes of highly saline water extracted along with oil and gas from some producing formations gets injected into a deep disposal zone, the Arbuckle Formation, which sits directly upon crystalline basement rocks. Rising pore pressure in the Arbuckle Formation can penetrate already-stressed basement faults and trigger earthquakes. Image courtesy Steven Than/Stanford University. For a larger version of this image please go here.

Stanford geophysicists have identified the triggering mechanism responsible for the recent spike of earthquakes in parts of Oklahoma-a crucial first step in eventually stopping them.

In a new study published in the June 19 issue of the journal Science Advances, Professor Mark Zoback and PhD student Rall Walsh show that the state's rising number of earthquakes coincided with dramatic increases in the disposal of salty wastewater into the Arbuckle formation, a 7,000-foot-deep, sedimentary formation under Oklahoma.

In addition, the pair showed that the primary source of the quake-triggering wastewater is not so-called "flow back water" generated after hydraulic fracturing operations. Rather, the culprit is "produced water"-brackish water that naturally coexists with oil and gas within the Earth. Companies separate produced water from extracted oil and gas and typically reinject it into deeper disposal wells.

"What we've learned in this study is that the fluid injection responsible for most of the recent quakes in Oklahoma is due to production and subsequent injection of massive amounts of wastewater, and is unrelated to hydraulic fracturing," said Zoback, the Benjamin M. Page Professor in the School of Earth, Energy and Environmental Sciences.

The Stanford study results were a major contributing factor in the recent decision by the Oklahoma Geological Survey (OGS) to issue a statement that said it was "very likely" that most of the state's recent earthquakes are due to the injection of produced water into disposal wells that extend down to, or even beyond, the Arbuckle formation.

Recent increases in seismicity
Before 2008, Oklahoma experienced one or two magnitude 4 earthquakes per decade, but in 2014 alone, the state experienced 24 such seismic events. Although the earthquakes are felt throughout much of the state, they pose little danger to the public, but scientists say that the possibility of triggering larger, potentially damaging earthquakes cannot be discounted.

In the study, Zoback and Walsh looked at three study areas-centered around the towns of Cherokee, Perry and Jones-in Oklahoma that have experienced the greatest number of earthquakes in recent years. All three areas showed clear increases in quakes following increases in wastetwater disposal. Three nearby control areas that did not have much wastewater disposal did not experience increases in the number of quakes.

Because the pair were also able to review data about the total amount of wastewater injected at wells, as well as the total amount of hydraulic fracturing happening in each study area, they were able to conclude that the bulk of the injected water was produced water generated using conventional oil extraction techniques, not during hydraulic fracturing.

"We know that some of the produced water came from wells that were hydraulically fractured, but in the three areas of most seismicity, over 95 percent of the wastewater disposal is produced water, not hydraulic fracturing flowback water," said Zoback, who is also a senior fellow at Stanford's Precourt Institute for Energy and director of the university's recently launched Natural Gas Initiative, which is focused on ensuring that natural gas is developed and used in ways that are economically, environmentally, and societally optimal.

Time delay explained
The three study areas in Oklahoma that Zoback and Walsh looked at all showed a time delay between peak injection rate and the onset of seismicity, as well as spatial separations between the epicenter of the quakes and the injection well sites. Some of the quakes occurred months or even years after injection rates peaked and in locations that were sometimes located miles away from any wells.

These discrepancies had previously puzzled scientists, and had even been used by some to argue against a link between wastewater disposal and triggered earthquakes, but Zoback said they are easily explained by a simple conceptual model for Oklahoma's seismicity that his team has developed.

According to this model, wastewater disposal is increasing the pore pressure in the Arbuckle formation, the disposal zone that sits directly above the crystalline basement, the rock layer where earthquake faults lie. Pore pressure is the pressure of the fluids within the fractures and pore spaces of rocks at depth. The earth's crust contains many pre-existing faults, some of which are geologically active today. Shear stress builds up slowly on these faults over the course of geologic time, until it finally overcomes the frictional strength that keeps the two sides of a fault clamped together. When this happens, the fault slips, and energy is released as an earthquake.

Active faults in Oklahoma might trigger an earthquake every few thousand years. However, by increasing the fluid pressure through disposal of wastewater into the Arbuckle formation in the three areas of concentrated seismicity-from about 20 million barrels per year in 1997 to about 400 million barrels per year in 2013-humans have sped up this process dramatically. "The earthquakes in Oklahoma would have happened eventually," Walsh said. "But by injecting water into the faults and pressurizing them, we've advanced the clock and made them occur today."

Moreover, because pressure from the wastewater injection is spreading throughout the Arbuckle formation, it can affect faults located far from well sites, creating the observed time delay. "You can easily imagine that if a fault wasn't located directly beneath a well, but several miles away, it would take time for the fluid pressure to propagate," Walsh said.

Possible solutions
Now that the source of the recent quakes in Oklahoma is known, scientists and regulators can work on ways to stop them. One possible solution, Zoback said, would be cease injection of produced water into the Arbuckle formation entirely, and instead inject it back into producing formations such as the Mississippian Lime, an oil-rich limestone layer where much of the produced water in Oklahoma comes from in the first place.

Some companies already reinject water back into reservoirs in order to displace remaining oil and make it easier to recover. The Stanford study found that this technique, called enhanced oil recovery, does not result in increased earthquakes.

Even if companies opt to use producing formations to store wastewater, however, the quakes won't cease immediately. "They've already injected so much water that the pressure is still spreading throughout the Arbuckle formation," Zoback said. "The earthquakes won't stop overnight, but they should subside over time."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Origins of Red Sea's 'cannon earthquakes' revealed in new study
San Francisco CA (SPX) Jun 18, 2015
For many generations, Bedouin people living in the Abu Dabbab area on the Egyptian Red Sea coast have heard distinct noises--like the rumbling of a quarry blast or cannon shot--accompanying small earthquakes in the region. Now, a new study published in the Bulletin of the Seismological Society of America offers an explanation for this uniquely noisy seismic event. Seismic activity in the a ... read more


SHAKE AND BLOW
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

SHAKE AND BLOW
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

SHAKE AND BLOW
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

SHAKE AND BLOW
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

SHAKE AND BLOW
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

SHAKE AND BLOW
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

SHAKE AND BLOW
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

SHAKE AND BLOW
Mantis shrimp inspires new body armor and football helmet design

A new look at surface chemistry

Penn research simplifies recycling of rare-earth magnets

Penn researchers develop a new type of gecko-like gripper




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.