Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Ocean acidification may cause dramatic changes to phytoplankton
by Staff Writers
Boston MA (SPX) Jul 21, 2015


A variety of marine diatoms. Image courtesy Wikimedia Commons.

Oceans have absorbed up to 30 percent of human-made carbon dioxide around the world, storing dissolved carbon for hundreds of years. As the uptake of carbon dioxide has increased in the last century, so has the acidity of oceans worldwide. Since pre-industrial times, the pH of the oceans has dropped from an average of 8.2 to 8.1 today. Projections of climate change estimate that by the year 2100, this number will drop further, to around 7.8 - significantly lower than any levels seen in open ocean marine communities today.

Now a team of researchers from MIT, the University of Alabama, and elsewhere has found that such increased ocean acidification will dramatically affect global populations of phytoplankton - microorganisms on the ocean surface that make up the base of the marine food chain.

In a study published in the journal Nature Climate Change, the researchers report that increased ocean acidification by 2100 will spur a range of responses in phytoplankton: Some species will die out, while others will flourish, changing the balance of plankton species around the world.

The researchers also compared phytoplankton's response not only to ocean acidification, but also to other projected drivers of climate change, such as warming temperatures and lower nutrient supplies.

For instance, the team used a numerical model to see how phytoplankton as a whole will migrate significantly, with most populations shifting toward the poles as the planet warms. Based on global simulations, however, they found the most dramatic effects stemmed from ocean acidification.

Stephanie Dutkiewicz, a principal research scientist in MIT's Center for Global Change Science, says that while scientists have suspected ocean acidification might affect marine populations, the group's results suggest a much larger upheaval of phytoplankton - and therefore probably the species that feed on them - than previously estimated.

"I've always been a total believer in climate change, and I try not to be an alarmist, because it's not good for anyone," says Dutkiewicz, who is the paper's lead author.

"But I was actually quite shocked by the results. The fact that there are so many different possible changes, that different phytoplankton respond differently, means there might be some quite traumatic changes in the communities over the course of the 21st century. A whole rearrangement of the communities means something to both the food web further up, but also for things like cycling of carbon."

The paper's co-authors include Mick Follows, an associate professor in MIT's Department of Earth, Atmospheric and Planetary Sciences.

Winners and losers
To get a sense for how individual species of phytoplankton react to a more acidic environment, the team performed a meta-analysis, compiling data from 49 papers in which others have studied how single species grow at lower pH levels. Such experiments typically involve placing organisms in a flask and recording their biomass in solutions of varying acidity.

In all, the papers examined 154 experiments of phytoplankton. The researchers divided the species into six general, functional groups, including diatoms, Prochlorococcus, and coccolithophores, then charted the growth rates under more acidic conditions. They found a whole range of responses to increasing acidity, even within functional groups, with some "winners" that grew faster than normal, while other "losers" died out.

The experimental data largely reflected individual species' response in a controlled laboratory environment. The researchers then worked the experimental data into a global ocean circulation model to see how multiple species, competing with each other, responded to rising acidity levels.

The researchers paired MIT's global circulation model - which simulates physical phenomena such as ocean currents, temperatures, and salinity - with an ecosystem model that simulates the behavior of 96 species of phytoplankton. As with the experimental data, the researchers grouped the 96 species into six functional groups, then assigned each group a range of responses to ocean acidification, based on the ranges observed in the experiments.

Natural competition off balance
After running the global simulation several times with different combinations of responses for the 96 species, the researchers observed that as ocean acidification prompted some species to grow faster, and others slower, it also changed the natural competition between species.

"Normally, over evolutionary time, things come to a stable point where multiple species can live together," Dutkiewicz says. "But if one of them gets a boost, even though the other might get a boost, but not as big, it might get outcompeted. So you might get whole species just disappearing because responses are slightly different."

Dutkiewicz says shifting competition at the plankton level may have big ramifications further up in the food chain.

"Generally, a polar bear eats things that start feeding on a diatom, and is probably not fed by something that feeds on Prochlorococcus, for example," Dutkiewicz says. "The whole food chain is going to be different."

By 2100, the local composition of the oceans may also look very different due to warming water: The model predicts that many phytoplankton species will move toward the poles. That means that in New England, for instance, marine communities may look very different in the next century.

"If you went to Boston Harbor and pulled up a cup of water and looked under a microscope, you'd see very different species later on," Dutkiewicz says. "By 2100, you'd see ones that were living maybe closer to North Carolina now, up near Boston."

Dutkiewicz says the model gives a broad-brush picture of how ocean acidification may change the marine world. To get a more accurate picture, she says, more experiments are needed, involving multiple species to encourage competition in a natural environment.

"Bottom line is, we need to know how competition is important as oceans become more acidic," she says.

Study published in the journal Nature Climate Change


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
SeaWorld staffer allegedly spied on animal rights group
Los Angeles (AFP) July 17, 2015
US theme park SeaWorld has suspended an employee who allegedly infiltrated the animal rights group PETA - but activists denounced the move as cosmetic and said they could unmask more spies. People for the Ethical Treatment of Animals (PETA) has long clashed with the Miami-based marine tourist attraction, which it accuses of cruelty to animals notably over its treatment of killer whales. ... read more


WATER WORLD
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

WATER WORLD
Curiosity rover finds evidence of Mars' primitive continental crust

Never Get Lost on Mars Again With NASA's New Red Planet Map

Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

WATER WORLD
NASA selects leading-edge concepts for continued study

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

WATER WORLD
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

WATER WORLD
Student satellite wins green light for Station deployment

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

WATER WORLD
Baikonur Cosmodrome to Be Equipped With Viewing Platforms

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

WATER WORLD
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

WATER WORLD
'White graphene' structures can take the heat

Trapped light orbits within an intriguing material

Disney gives sneak peek for planned China theme park

Better memory with faster lasers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.