Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Object recognition for robots
by Staff Writers
Boston MA (SPX) Aug 05, 2015


The proposed SLAM-aware object recognition system is able to localize and recognize several objects in the scene, aggregating detection evidence across multiple views. The annotations are actual predictions proposed by the system. Image courtesy of the researchers. For a larger version of this image please go here.

John Leonard's group in the MIT Department of Mechanical Engineering specializes in SLAM, or simultaneous localization and mapping, the technique whereby mobile autonomous robots map their environments and determine their locations.

Last week, at the Robotics Science and Systems conference, members of Leonard's group presented a new paper demonstrating how SLAM can be used to improve object-recognition systems, which will be a vital component of future robots that have to manipulate the objects around them in arbitrary ways.

The system uses SLAM information to augment existing object-recognition algorithms. Its performance should thus continue to improve as computer-vision researchers develop better recognition software, and roboticists develop better SLAM software.

"Considering object recognition as a black box, and considering SLAM as a black box, how do you integrate them in a nice manner?" asks Sudeep Pillai, a graduate student in computer science and engineering and first author on the new paper. "How do you incorporate probabilities from each viewpoint over time? That's really what we wanted to achieve."

Despite working with existing SLAM and object-recognition algorithms, however, and despite using only the output of an ordinary video camera, the system's performance is already comparable to that of special-purpose robotic object-recognition systems that factor in depth measurements as well as visual information.

And of course, because the system can fuse information captured from different camera angles, it fares much better than object-recognition systems trying to identify objects in still images.

Drawing boundaries
Before hazarding a guess about which objects an image contains, Pillai says, newer object-recognition systems first try to identify the boundaries between objects. On the basis of a preliminary analysis of color transitions, they'll divide an image into rectangular regions that probably contain objects of some sort. Then they'll run a recognition algorithm on just the pixels inside each rectangle.

To get a good result, a classical object-recognition system may have to redraw those rectangles thousands of times. From some perspectives, for instance, two objects standing next to each other might look like one, particularly if they're similarly colored. The system would have to test the hypothesis that lumps them together, as well as hypotheses that treat them as separate.

Because a SLAM map is three-dimensional, however, it does a better job of distinguishing objects that are near each other than single-perspective analysis can. The system devised by Pillai and Leonard, a professor of mechanical and ocean engineering, uses the SLAM map to guide the segmentation of images captured by its camera before feeding them to the object-recognition algorithm. It thus wastes less time on spurious hypotheses.

More important, the SLAM data let the system correlate the segmentation of images captured from different perspectives. Analyzing image segments that likely depict the same objects from different angles improves the system's performance.

Picture perfect
Using machine learning, other researchers have built object-recognition systems that act directly on detailed 3-D SLAM maps built from data captured by cameras, such as the Microsoft Kinect, that also make depth measurements. But unlike those systems, Pillai and Leonard's system can exploit the vast body of research on object recognizers trained on single-perspective images captured by standard cameras.

Moreover, the performance of Pillai and Leonard's system is already comparable to that of the systems that use depth information. And it's much more reliable outdoors, where depth sensors like the Kinect's, which depend on infrared light, are virtually useless.

Pillai and Leonard's new paper describes how SLAM can help improve object detection, but in ongoing work, Pillai is investigating whether object detection can similarly aid SLAM. One of the central challenges in SLAM is what roboticists call "loop closure." As a robot builds a map of its environment, it may find itself somewhere it's already been -- entering a room, say, from a different door. The robot needs to be able to recognize previously visited locations, so that it can fuse mapping data acquired from different perspectives.

Object recognition could help with that problem. If a robot enters a room to find a conference table with a laptop, a coffee mug, and a notebook at one end of it, it could infer that it's the same conference room where it previously identified a laptop, a coffee mug, and a notebook in close proximity.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROBO SPACE
Tiny mechanical wrist gives new dexterity to needlescopic surgery
Nashville TN (SPX) Jul 28, 2015
With the flick of a tiny mechanical wrist, a team of engineers and doctors at Vanderbilt University's Medical Engineering and Discovery Laboratory hope to give needlescopic surgery a whole new degree of dexterity. Needlescopic surgery, which uses surgical instruments shrunk to the diameter of a sewing needle, is the ultimate form of minimally invasive surgery. The needle-sized incisions it ... read more


ROBO SPACE
NASA Could Return Humans to the Moon by 2021

Smithsonian embraces crowdfunding to preserve lunar spacesuit

NASA Sets Sights on Robot-Built Moon Colony

Technique may reveal the age of moon rocks during spaceflight

ROBO SPACE
Buckingham astrobiologists to look for life on Mars

NASA Mars Orbiter Preparing for Mars Lander's 2016 Arrival

New Website Gathering Public Input on NASA Mars Images

Antarctic Offers Insights Into Life on Mars

ROBO SPACE
Japanese firm to mature whisky in space

Start-ups in spotlight at new Hong Kong tech meet

Third spaceflight for astronaut Paolo Nespoli

Solar weather reports key to safe space travel

ROBO SPACE
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

ROBO SPACE
Space Kombucha in the search for life and its origin

Political Tensions Have No Impact on Space Cooperation- Roscosmos

RED epic dragon camera captures riveting images on space station

Launch, docking returns ISS crew to full strength

ROBO SPACE
Payload fit-check for next Ariane 5 mission

SMC goes "2-for-2" on weather delayed launch

China tests new carrier rocket

Arianespace inaugurates new fueling facility for Soyuz upper stage

ROBO SPACE
Microlensing used to find distant Uranus-sized planet

NASA's Spitzer Confirms Closest Rocky Exoplanet

Finding Another Earth

Kepler Mission Discovers Bigger, Older Cousin to Earth

ROBO SPACE
Auburn and NASA sign Space Act Agreement on additive manufacturing

Twin discoveries, 'eerie' effect may lead to manufacturing advances

Cages offer new direction in sustainable catalyst design

Controlling phase changes in solids




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.