Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
OSIRIS catches glimpse of Rosetta's shadow
by Staff Writers
Gottingen, Germany (SPX) Mar 04, 2015


Close-up view of the Imhotep region on comet 67P/Churyumov-Gerasimenko caught by OSIRIS' Narrow Angle Camera during Rosetta's flyby on 14 February 2015. Only six kilometers separate Rosetta from the comet's surface leading to a resolution of 11 centimeters per pixel. At the bottom of the image Rosetta's shadow can be seen. Image courtesy ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Several days after Rosetta's close flyby of comet 67P/Churyumov-Gerasimenko on 14 February 2015, images taken on this day by OSIRIS, the scientific imaging system on board, have now been downlinked to Earth. With a resolution of 11 centimeters per pixel, these data from OSIRIS' Narrow Angle Camera reveal highly detailed structures on the comet's surface.

Since at closest approach Sun, spacecraft and comet were almost perfectly aligned, few shadows are visible in the images. With one exception: as a side-effect of this exceptional observational geometry Rosetta's shadow on the surface can be seen surrounded by a bright halo-like region.

The newly released images show an area near the edge of the comet's belly at the boundary of the Imhotep region covering 228 meters x 228 meters on the comet's surface. A mesh of steep slopes separates smooth looking terrain from a more craggy area.

The image was taken from a distance of six kilometers from the comet's surface thus making structures with a pixel scale of only 11 centimeters visible. In resolution it is only surpassed by images taken by Philae's camera ROLIS on 12 November, 2015 during descent.

During the flyby Rosetta not only passed closer by a comet than ever before, but also engaged in a unique observational geometry: For a short time during the maneuver Sun, spacecraft and comet were exactly aligned. "Images taken from this viewpoint are of high scientific value", says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research (MPS) in Germany.

Since the surface structures cast almost no shadows, the surface's reflection properties can be discerned. "This kind of view is key for the study of grain sizes", he adds.

At the bottom of the image, Rosetta's shadow can be seen as a fuzzy rectangular-shaped dark spot measuring approximately 20 x 50 square meters. These dimensions are determined by the spacecraft's penumbra. Such penumbras occur when an object is illuminated by more than one light source - or an extended one like the Sun.

In both cases light reaches the object from different directions leading to a dark core shadow where the object blocks the entire light source and an adjacent penumbra where only part of the light source is concealed. Considering the distance between Rosetta and the comet's surface, the penumbra effect leads to a shadow both 20 meters longer and wider than Rosetta's dimensions of approximately 2 x 32 square meters which is cast on the tilted surface of the comet.

In addition, the region surrounding the shadow appears brighter than the rest of the comet's surface seen in the image. Scientists refer to this effect as an opposition surge.

It is known, for example, from photographs showing astronauts on the Moon and occurs typically on highly structured, regolith surfaces when light incidents from the same direction into which it is reflected. In this situation shadows normally cast by small surface grains disappear leading to a pronounced increase in brightness. This is further enhanced by the backscattering of light by the small particles on the surface of the comet.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by DLR, MPS, CNES and ASI. Rosetta is the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and deploy a lander to its surface.

The scientific imaging system OSIRIS was built by a consortium led by the Max Planck Institute for Solar System Research (Germany) in collaboration with CISAS, University of Padova (Italy), the Laboratoire d'Astrophysique de Marseille (France), the Instituto de Astrofisica de Andalucia, CSIC (Spain), the Scientific Support Office of the European Space Agency (The Netherlands), the Instituto Nacional de Tecnica Aeroespacial (Spain), the Universidad Politechnica de Madrid (Spain), the Department of Physics and Astronomy of Uppsala University (Sweden), and the Institute of Computer and Network Engineering of the TU Braunschweig (Germany). OSIRIS was financially supported by the national funding agencies of Germany (DLR), France (CNES), Italy (ASI), Spain (MEC), and Sweden (SNSB) and the ESA Technical Directorate.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute for Solar System Research (MPS)
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





IRON AND ICE
Dark Energy Camera catches breathtaking glimpse of comet Lovejoy
Batavia IL (SPX) Mar 02, 2015
On December 27, 2014, while scanning the southern sky as part of the Dark Energy Survey, researchers snapped the above shot of comet Lovejoy. The image above was captured using the 570-megapixel Dark Energy Camera, the world's most powerful digital camera. Each of the rectangular shapes above represents one of the 62 individual fields of the camera. At the time this image was t ... read more


IRON AND ICE
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

IRON AND ICE
Curiosity confirms methane in Mars' atmosphere

New Flight Software to Fix Memory Issues is Onboard Rover

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

IRON AND ICE
Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

Fast visas and dim sum: Spain seeks to attract Chinese tourists

IRON AND ICE
Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

IRON AND ICE
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

IRON AND ICE
Next Launch of Heavy Angara-5 Rocket Due Next Year

SES Announces Two Launch Agreements With SpaceX

Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

IRON AND ICE
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

IRON AND ICE
Australia researchers create 'world first' 3D-printed jet engines

Debris Fills Orbit as US Satellite Explodes

Watching bonds form using femtosecond X-ray liquidography

New research predicts when, how materials will act




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.