. 24/7 Space News .
INTERNET SPACE
Nuclear pores captured on film
by Staff Writers
Basel, Switzerland (SPX) May 04, 2016


Video imaging by high-speed AFM captures native nuclear pore complexes at work; the inset scale bar is 10 nanometers. Image courtesy University of Basel. For a larger version of this image please go here.

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed "living" nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular "tentacles" inside the pore.

The atomic force microscope (AFM) is not a microscope to look through. Like a blind man uses his fingers, it "feels" a surface with an extremely fine tip to resolve tiny cellular structures of only millionths of a millimeter in size, such as the pores in the nuclear envelope.

However, this process is normally slow and can take up to one minute to capture an image. In comparison, modern high-speed AFMs are able to record movies of molecules in action by capturing several hundred images per minute.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly visualized the nuclear pore's selective barrier, but also its dynamic behavior to resolve a long-standing mystery of how unwanted molecules are prevented from entering the nucleus.

Nuclear pore complexes regulate the transport of molecules
The overall structure of the nuclear pores is generally known. These are not simple holes, but are massive transport hubs that incorporate by the thousands into the nuclear membrane. They have a donut-shaped structure consisting of about thirty different proteins, called nucleoporins, and a central transport channel. Within the pore, several disordered proteins (FG Nups) form a selectivity barrier or filter.

While small molecules can easily pass this barrier, large molecules such as proteins are prevented from entering the nuclear pore. An exception to this are the proteins needed in the cell nucleus, for example, for the repair or replication of genetic material. Their translocation from the cytoplasm to the nucleus is assisted by transport receptors that recognize a specific "address tag" carried by these proteins.

High-speed AFM reveals dynamic processes
"With the high-speed AFM we could for the first time, peer inside native nuclear pore complexes, only forty nanometers in size", says Lim. "This method is a real game changer. We could see the individual FG Nups and film them in action. This wasn't possible until now!"

Additionally, Yusuke Sakiyama, the PhD student who performed the experiments, had to grow super-sharp carbon nanofibers on each high-speed probe in order to reach inside the NPC. This then generates a video sequence from multiple images that enables the researcher to observe the "true to life" dynamics of biological processes at the nanometer level.

A barrier of undulating molecular "tentacles"

Due to the high spatial and temporal resolution, the scientists were able to show that the FG Nup filaments are highly flexible. "They are not stiff bristles but quite the contrary. Like the thinnest tentacles, the FG Nups rapidly fluctuate, elongate and retract, and sometimes even briefly intermingle within the pore", says Lim.

The speed of their motion determines which molecules can pass through the pore. "Large particles move much more slowly than the FG Nups and are thus hindered from entering the NPC by repeated collisions", explains Lim. "Small molecules, however, undergo rapid diffusion and have a high probability of passing the FG Nup barrier."

By understanding how NPCs function as transport hubs in living cells, Lim who is a member of the NCCR Molecular Systems Engineering is now investigating how NPC-inspired selective filters might regulate molecular traffic in non-biological systems.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Basel
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
EU roaming charges drop sharply on Saturday
Brussels (AFP) April 29, 2016
Mobile phone roaming fees in the EU will fall sharply on Saturday, the last step before they are abolished completely for Europeans next year. The European Union will scrap phone roaming charges outright on June 15, 2017 ending fees loathed by millions of holidaymakers and business travellers across Europe. "We're in the home stretch now before the end of roaming charges in 2017," Andrus ... read more


INTERNET SPACE
First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

INTERNET SPACE
Opportunity completes mini-walkabout

Curiosity Mars Rover crosses rugged plateau

Mars' surface revealed in unprecedented detail

Space X's Red Dragons to start Mars exploration in 2018

INTERNET SPACE
US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

When technology bites back

Menstruation in spaceflight: Options for astronauts

INTERNET SPACE
South China city gears up for satellite tourism

China's long march into space

China's top astronaut goes to "space camp"

China open to Sino-US space cooperation

INTERNET SPACE
Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

US-Russia Space Projects Set Example of Good Cooperation

Russia, US discuss boosting efficiency of cooperation at ISS

INTERNET SPACE
SpaceX vows to send capsule to Mars by 2018

Russia May Launch Upgraded Proton-M Rocket on May28

India to test Reusable Launch Vehicle in June

Soyuz demonstrates Arianespace mission flexibility

INTERNET SPACE
On the Road to Finding Other Earths

Kepler spacecraft recovered and returned to the K2 Mission

Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

INTERNET SPACE
It takes more than peer pressure to make large microgels fit in

Folding molecules into screw-shaped structures

Engineers develop micro-sized, liquid-metal particles for heat-free soldering

Speedy bridge repair









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.