. 24/7 Space News .
NANO TECH
Novel 'crumpling' of hybrid nanostructures increases SERS sensitivity
by Staff Writers
Chicago IL (SPX) Nov 15, 2015


Illustration of SERS enhancement from a crumpled graphene-Au nanoparticles hybrid structure. Raman spectrum is enhanced the most when the target molecule is situated at the center of Au nanoparticles in valley of crumpled graphene as depicted in inset. Image courtesy University of Illinois. For a larger version of this image please go here.

By "crumpling" to increase the surface area of graphene-gold nanostructures, researchers from the University of Illinois at Urbana-Champaign have improved the sensitivity of these materials, opening the door to novel opportunities in electronics and optical sensing applications.

"I believe that this work will benefit researchers in the area of surface plasmonics by providing a new strategy/design for enhancing the surface enhanced Raman spectroscopy (SERS) detection limit," explained SungWoo Nam, an assistant professor of mechanical science and engineering at Illinois. "This mechanical self-assembly strategy will enable a new class of 3D crumpled graphene-gold (Au) nanostructures. The enhanced limit of detection will allow biomedical and environment monitoring of important molecules at high sensitivity by SERS."

SERS substrates are used to analyze the composition of a mixture at the nanoscale for environmental analysis, pharmaceuticals, material sciences, art and archeological research, forensic science, drug detection, food quality analysis, and single cell detection. Using a combination of gold and silver nanoparticles and Raman-active dyes, SERS substrates also can target specific DNA and RNA sequences.

"This work demonstrates the unique capability of micro-to-nanoscale topographies of the crumpled graphene-Au nanoparticles--higher density, three-dimensional optically active materials--that are further enhanced by the formation of hot spots, bringing the nanoparticles closer," explained Juyoung Leem, a graduate student and first author of the study, "Mechanically Self-Assembled, Three-Dimensional Graphene - Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors," published in Nano Letters.

"We achieve a 3D crumpled graphene - Au hybrid structure by the delamination and buckling of graphene on a thermally activated, shrinking polymer substrate. This process enables precise control and optimization of the size and spacing of integrated Au nanoparticles on crumpled graphene for higher SERS enhancement."

According to Nam, the 3D crumpled graphene?Au nanostructure exhibits at least one order of magnitude higher SERS detection sensitivity than that of conventional, flat graphene?Au nanoparticles. The hybrid structure is further adapted to arbitrary curvilinear structures for advanced, in situ, nonconventional, nanoplasmonic sensing applications.

"One of the key advantages of our platform is its ability to shrink and adapt to complex 3D surfaces, a function that has not been previously demonstrated," Nam stated. An earlier study by Nam's research group was the first to demonstrate graphene integration onto a variety of different microstructured geometries, including pyramids, pillars, domes, inverted pyramids, and the 3D integration of gold nanoparticle/graphene hybrid structures.

In addition to Leem and Nam, the study's co-authors include post-doctoral researcher Pilgyu Kang and graduate student Michael Cai Wang in the Department of Mechanical Sciences and Engineering. Experiments were carried out in part in the Frederick Seitz Materials Research Laboratory, the Micro and Nano Technology Laboratory, and the Beckman Institute Imaging Technology Group at Illinois.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Illinois College of Engineering
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
New way of computing with interaction-dependent nanomagnets
Tampa FL (SPX) Nov 06, 2015
Researchers from the University of South Florida College of Engineering have proposed a new form of computing that uses circular nanomagnets to solve quadratic optimization problems orders of magnitude faster than that of a conventional computer. A wide range of application domains can be potentially accelerated through this research such as finding patterns in social media, error-correcti ... read more


NANO TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

NANO TECH
Upgrade Helps NASA Study Mineral Veins on Mars

Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NANO TECH
Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

NANO TECH
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

NANO TECH
Space station power short circuits, system repairs needed

Cygnus Starts Final Round of Processing for Station Cargo Delivery

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NANO TECH
Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

More launches ahead for UH's Hawaii Space Flight Laboratory

LISA Pathfinder topped off for Vega launch that will test Relativity

NANO TECH
Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

New exoplanet in our neighborhood

Asteroid ripped apart to form star's glowing ring system

NANO TECH
Computers tackle one of chemistry's greatest challenges

Conducting gels - from waste to wealth

Lockheed Martin introduces Digital Array Row Transceiver

Lasers could rapidly make materials hotter than the Sun









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.