. 24/7 Space News .
ROBO SPACE
Next-generation robotic cockroach can explore under water environments
by Staff Writers
Boston MA (SPX) Jul 04, 2018

The next generation of Harvard's Ambulatory Microrobot (HAMR) can walk on land, swim on the surface of water, and walk underwater, opening up new environments for this little bot to explore.

In nature, cockroaches can survive underwater for up to 30 minutes. Now, a robotic cockroach can do even better. Harvard's Ambulatory Microrobot, known as HAMR, can walk on land, swim on the surface of water, and walk underwater for as long as necessary, opening up new environments for this little bot to explore.

This next generation HAMR uses multifunctional foot pads that rely on surface tension and surface tension induced buoyancy when HAMR needs to swim but can also apply a voltage to break the water surface when HAMR needs to sink. This process is called electrowetting, which is the reduction of the contact angle between a material and the water surface under an applied voltage. This change of contact angle makes it easier for objects to break the water surface.

Moving on the surface of water allows a microrobot to evade submerged obstacles and reduces drag. Using four pairs of asymmetric flaps and custom designed swimming gaits, HAMR robo-paddles on the water surface to swim. Exploiting the unsteady interaction between the robot's passive flaps and the surrounding water, the robot generates swimming gaits similar to that of a diving beetle. This allows the robot to effectively swim forward and turn.

"This research demonstrates that microrobotics can leverage small-scale physics - in this case surface tension - to perform functions and capabilities that are challenging for larger robots," said Kevin Chen, a postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and first author of the paper.

The most recent research is published in the journal Nature Communications.

"HAMR's size is key to its performance," said Neel Doshi, graduate student at SEAS and co-author of the paper. "If it were much bigger, it would be challenging to support the robot with surface tension and if it were much smaller, the robot might not be able to generate enough force to break it."

HAMR weighs 1.65 grams (about as much as a large paper clip), can carry 1.44 grams of additional payload without sinking and can paddle its legs with a frequency up to 10 Hz. It's coated in Parylene to keep it from shorting under water.

Once below the surface of the water, HAMR uses the same gait to walk as it does on dry land and is just as mobile. To return to dry land HAMR faces enormous challenge from the water's hold. A water surface tension force that is twice the robot weight pushes down on the robot, and in addition the induced torque causes a dramatic increase of friction on the robot's hind legs.

The researchers stiffened the robot's transmission and installed soft pads to the robot's front legs to increase payload capacity and redistribute friction during climbing. Finally, walking up a modest incline, the robot is able break out of the water's hold.

"This robot nicely illustrates some of the challenges and opportunities with small-scale robots," said senior author Robert Wood, Charles River Professor of Engineering and Applied Sciences at SEAS and core faculty member of the Harvard Wyss Institute for Biologically Inspired Engineering.

"Shrinking brings opportunities for increased mobility - such as walking on the surface of water - but also challenges since the forces that we take for granted at larger scales can start to dominate at the size of an insect."

Next, the researchers hope to further improve HAMR's locomotion and find a way to return to land without a ramp, perhaps incorporating gecko-inspired adhesives or impulsive jumping mechanisms.


Related Links
Harvard School of Engineering and Applied Sciences
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Activity simulator could eventually teach robots tasks like making coffee or setting the table
Boston MA (SPX) Jun 26, 2018
For many people, household chores are a dreaded, inescapable part of life that we often put off or do with little care - but what if a robot maid could help lighten the load? Recently, computer scientists have been working on teaching machines to do a wider range of tasks around the house. In a new paper spearheaded by MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and the University of Toronto, researchers demonstrate "VirtualHome," a system that can simulate detailed house ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
New head of 'space nation' aims for the stars

Hague, Ovchinin talk ISS mission during presser

Deep space navigation: tool tested as emergency navigation device

ASRC Federal subsidiary awarded $1B NASA contract for advanced computing services

ROBO SPACE
Looking to the Future with Ariane 6 and Vega C Launchers for Asia-Pacific Customers

Air Force contracts for next generation space launch propulsion system

Virgin Orbit's LauncherOne to join Spaceflight's portfolio of launch vehicles

Air Force contracts SpaceX for satellite launch

ROBO SPACE
Opportunity sleeps during a planet-encircling dust storm

Martian Dust Storm Grows Global; Curiosity Captures Photos of Thickening Haze

Explosive volcanoes spawned mysterious Martian rock formation

Unique microbe could thrive on Mars, help future manned missions

ROBO SPACE
China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

ROBO SPACE
SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

A milestone in securing ESA's future role in the global exploration of space

US FCC expands market access for SES O3b MEO constellation

ROBO SPACE
Smarter, faster algorithm cuts number of steps to solve problems

New, safer waterproof coating invented by MIT scientists

Indian Space Agency to teach foreign students how to build satellites

Experiments of the Russian scientists in space lead to a new way of 3D-bioprinting

ROBO SPACE
Hardy organisms threaten interplanetary contamination

Scientists developing guidebook for finding life beyond Earth

Will we know life when we see it

UW part of NASA network coordinating search for life on exoplanets

ROBO SPACE
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.