Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



STELLAR CHEMISTRY
New type of supercomputer could be based on 'magic dust' combination of light and matter
by Staff Writers
Cambridge UK (SPX) Sep 26, 2017


Berloff and her colleagues approached the problem from an unexpected angle: What if instead of moving along the mountainous terrain in search of the lowest point, one fills the landscape with a magical dust that only shines at the deepest level, becoming an easily detectible marker of the solution?

A team of researchers from the UK and Russia have successfully demonstrated that a type of 'magic dust' which combines light and matter can be used to solve complex problems and could eventually surpass the capabilities of even the most powerful supercomputers.

The researchers, from Cambridge, Southampton and Cardiff Universities in the UK and the Skolkovo Institute of Science and Technology in Russia, have used quantum particles known as polaritons - which are half light and half matter - to act as a type of 'beacon' showing the way to the simplest solution to complex problems. This entirely new design could form the basis of a new type of computer that can solve problems that are currently unsolvable, in diverse fields such as biology, finance or space travel. The results are reported in the journal Nature Materials.

Our technological progress - from modelling protein folding and behaviour of financial markets to devising new materials and sending fully automated missions into deep space - depends on our ability to find the optimal solution of a mathematical formulation of a problem: the absolute minimum number of steps that it takes to solve that problem.

The search for an optimal solution is analogous to looking for the lowest point in a mountainous terrain with many valleys, trenches, and drops. A hiker may go downhill and think that they have reached the lowest point of the entire landscape, but there may be a deeper drop just behind the next mountain. Such a search may seem daunting in natural terrain, but imagine its complexity in high-dimensional space.

"This is exactly the problem to tackle when the objective function to minimise represents a real-life problem with many unknowns, parameters, and constraints," said Professor Natalia Berloff of Cambridge's Department of Applied Mathematics and Theoretical Physics and the Skolkovo Institute of Science and Technology, and the paper's first author.

Modern supercomputers can only deal with a small subset of such problems when the dimension of the function to be minimised is small or when the underlying structure of the problem allows it to find the optimal solution quickly even for a function of large dimensionality. Even a hypothetical quantum computer, if realised, offers at best the quadratic speed-up for the "brute-force" search for the global minimum.

Berloff and her colleagues approached the problem from an unexpected angle: What if instead of moving along the mountainous terrain in search of the lowest point, one fills the landscape with a magical dust that only shines at the deepest level, becoming an easily detectible marker of the solution?

"A few years ago our purely theoretical proposal on how to do this was rejected by three scientific journals," said Berloff. "One referee said, 'Who would be crazy enough to try to implement this?!' So we had to do it ourselves, and now we've proved our proposal with experimental data."

Their 'magic dust' polaritons are created by shining a laser at stacked layers of selected atoms such as gallium, arsenic, indium, and aluminium. The electrons in these layers absorb and emit light of a specific colour. Polaritons are ten thousand times lighter than electrons and may achieve sufficient densities to form a new state of matter known as a Bose-Einstein condensate, where the quantum phases of polaritons synchronise and create a single macroscopic quantum object that can be detected through photoluminescence measurements.

The next question the researchers had to address was how to create a potential landscape that corresponds to the function to be minimised and to force polaritons to condense at its lowest point.

To do this, the group focused on a particular type of optimisation problem, but a type that is general enough so that any other hard problem can be related to it, namely minimisation of the XY model which is one of the most fundamental models of statistical mechanics. The authors have shown that they can create polaritons at vertices of an arbitrary graph: as polaritons condense, the quantum phases of polaritons arrange themselves in a configuration that correspond to the absolute minimum of the objective function.

"We are just at the beginning of exploring the potential of polariton graphs for solving complex problems," said co-author Professor Pavlos Lagoudakis, Head of the Hybrid Photonics Lab at the University of Southampton and the Skolkovo Institute of Science and Technology, where the experiments were performed. "We are currently scaling up our device to hundreds of nodes, while testing its fundamental computational power. The ultimate goal is a microchip quantum simulator operating at ambient conditions."

Research paper

STELLAR CHEMISTRY
Exotic quantum states made from light
Bonn, Germany (SPX) Aug 16, 2017
Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are sufficiently concentrated and cooled. The individual particles merge with each other, making them indistinguishable. Researchers call this a photonic Bose-Einstein condensate. It has long been known that normal atoms form such condens ... read more

Related Links
University of Cambridge
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Supercontinuum lasers to inspire better beer, bread

Diet tracker in space

NASA's Robotic 'Sniffer' Confirms Space Station Leak, Repair

Crewed Missions Beyond LEO

STELLAR CHEMISTRY
ISRO to resume satellite launches by December

Mechanisms are Critical to Space Vehicle Flight Success

Dragon Splashes Down in Pacific With NASA Science Experiments

Rocket fever launches UB students to engineering competition in New Mexico

STELLAR CHEMISTRY
Six emerge from 8-mo Mars experiment in Hawaii dome

More evidence of water on Mars

Ice mined on Mars could provide water for humans exploring space

Splashdown! Crashing into Martian mud

STELLAR CHEMISTRY
Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

Spacecraft passes docking test

China, Russia to Have Smooth Space Cooperation, Says Expert

STELLAR CHEMISTRY
Northrop Grumman to buy space firm Orbital for $9.2 bn

India, Japan Set to Boost Space Cooperation

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

STELLAR CHEMISTRY
Corrosion in real time

Self-healing gold particles

'Naturally' glowing cotton yields dazzling new threads

Research team discovers 'rubber material' that could lead to scratch-proof paint for car

STELLAR CHEMISTRY
The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet

NASA's Hubble captures blistering pitch-black planet

STELLAR CHEMISTRY
Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement