Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
New theory predicts wetted area of droplets colliding with flat surface
by Staff Writers
Kumamoto, Japan (SPX) May 26, 2017


Time progresses from the left image to the right image, where the far-right column of images represents drops exhibiting maximum spreading. (a) release height of the droplet z=10 mm, (b) z=100 mm, (c) z=700 mm. Credit Assistant Professor Yukihiro Yonemoto

Japanese researchers have succeeded in deriving a theoretical formula that quantitatively predicts the wetting and spreading behavior of droplets that collide with the flat surface of a solid material. Although the behavior of droplets colliding with a solid surface looks simple superficially, it is actually quite complicated due to various factors which influence each other such as surface roughness, fluid motion, and wettability (ease of liquid adherence) of the solid surface by the liquid.

In the past, researchers from all over the world have attempted to make quantitative predictions about the extent of wetted areas through experimentation, theory, and numerical analysis, but prediction, particularly during slow speed collisions, have not yet been realized.

Droplet collisions on solid surfaces is an important phenomenon for many industrial applications like ink jet printers, fuel injectors, and spray cooling. The maximum wetting and spreading area of droplets after collision is one of the most important parameters that influences the quality and efficiency of such equipment.

The maximum wetting and spreading area of a droplet also varies depending on the nature of the droplet, the speed at which the droplet strikes, and the nature of the solid upon which it strikes. For example, when a droplet collides with glass or Teflon, the maximum wetting and spreading area will be different.

The ease with which a liquid adheres to a surface depends on the surface wettability. The wettability of droplets adhering to a solid surface is characterized by the tangential dynamic balance equation (Young equation) at the contact line.?Elements normal to the solid surface are ignored, since it is thought that they are balanced by reaction forces with the solid.

In previous theoretical studies on the maximum wetting and spreading area of collision droplets, only the balance equation of the contact line in the tangential direction was considered. There were no relational expressions to predict the maximum wetting and spreading area of a droplet under a wide range of impinging velocity conditions.

Typically, two methods are used to make calculations, one when collision speeds are high and another when speeds are low. However, the conventional method used for high speed collisions generates large errors at low speeds and the conventional method used for low speed collisions returns large errors at high speeds.

To reduce calculation errors, a collaboration between Kumamoto University and Kyoto University researchers focused on what had yet to be studied in detail, the normal surface tension on the contact line and the energy balance of droplets colliding with solid surfaces.

While doing so, they considered the disadvantages of using conventional methods for evaluating the viscous dissipation of energy caused by fluid motion inside a droplet at the time of collision, and derived a new theoretical formula.

The newly derived theoretical formula gives the possibility of quantitatively predicting the maximum wetting and spreading area when droplets collide with various types of solids, such as silicone rubber or super water repellent substrates. Furthermore, the researchers confirmed that it can be applied not only to milli-size but also to micro-size droplets.

"Recently, nanoscale circuit fabrication technology for semiconductor substrates using inkjet technology has attracted much attention," said Tenure Track Assistant Professor Yukihiro Yonemoto of Kumamoto University, who leads the study.

"Observations of nanoscale phenomena, however, require expensive experimental equipment, and prediction by numerical analysis requires specialized technology. By using a simple method to predict the maximum wetting spreading area of a droplet after collision, we can expect to realize more efficient circuit designs among other things."

Droplets that strike the surface of a flat solid material will not only stretch and spread, but will also split into finer droplets (splash phenomenon) if the energy at the time of a collision is large. Researchers at Kumamoto University and Kyoto University are currently working on a theory that considers these phenomena to further extend the results of their research.

This finding was posted online in the open access journal Scientific Reports on 24th May 2017. Yukihiro Yonemoto and Tomoaki Kunugi. Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017. DOI: 10.1038/s41598-017-02450-4

TECH SPACE
Using light to rearrange macroscopic structures
Onna, Japan (SPX) May 30, 2017
Traditional chemistry is immensely powerful when it comes to producing very diverse and very complex microscopic chemical molecules. But one thing out of reach is the synthesis of large structures up to the macroscopic scale, which would require tremendous amounts of chemicals as well as an elaborate and complicated technique. For this purpose, scientists rely instead on "self-assembling" ... read more

Related Links
Kumamoto University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

TECH SPACE
Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

Neptune: Neutralizer-free plasma propulsion

Spaceflight buys Electron Rocket from Rocket Lab

TECH SPACE
Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

TECH SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TECH SPACE
Satellite industry supports FCC proposal to reduce internet regulations for service providers

AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

TECH SPACE
New method allows real-time monitoring of irradiated materials

Neutron lifetime measurements take new shape for in situ detection

Solving the riddle of the snow globe

One-dimensional crystals for low-temperature thermoelectric cooling

TECH SPACE
Water forms superstructure around DNA, new study shows

How RNA formed at the origins of life

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Scientists propose synestia, a new type of planetary object

TECH SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement