. 24/7 Space News .
SHAKE AND BLOW
New theory of deep-ocean sound waves may aid tsunami detection
by Staff Writers
Boston MA (SPX) Mar 01, 2016


"These waves really talk to each other," Themis Sapsis says. "They interact and exchange energy. It's not just bad luck. It's the dynamics that create this phenomenon."

Acoustic-gravity waves are very long sound waves that cut through the deep ocean at the speed of sound. These lightning-quick currents can sweep up water, nutrients, salts, and any other particles in their wake, at any water depth. They are typically triggered by violent events in the ocean, including underwater earthquakes, explosions, landslides, and even meteorites, and they carry information about these events around the world in a matter of minutes.

Researchers at MIT have now identified a less dramatic though far more pervasive source of acoustic-gravity waves: surface ocean waves, such as those that can be seen from a beach or the deck of a boat. These waves, known as surface-gravity waves, do not travel nearly as fast, far, or deep as acoustic-gravity waves, yet under the right conditions, they can generate the powerful, fast-moving, and low-frequency sound waves.

The researchers have developed a general theory that connects gravity waves and acoustic waves. They found that when two surface-gravity waves, heading toward each other, are oscillating at a similar but not identical frequency, their interaction can release up to 95 percent of their initial energy in the form of an acoustic wave, which in turn carries this energy and travels much faster and deeper.

This interaction may occur anywhere in the ocean, in particular in regions where surface-gravity waves interact as they reflect from continental shelf breaks, where the deep-sea suddenly faces a much shallower shoreline.

Usama Kadri, a visiting assistant professor and a research affiliate in MIT's Department of Mathematics, says the team's results establish a concrete and detailed relationship between surface-gravity waves and acoustic-gravity waves, which, until now, scientists had suspected did not exist.

Understanding this relationship, he says, allows researchers to describe how energy is exchanged between gravity and acoustic waves. He says this energy could be vital for many marine life forms, and it could play a role in water transport and the redistribution of carbon dioxide and heat to deeper waters, thereby sustaining a healthy marine environment.

Kadri and his colleague, Triantaphyllos Akylas, a professor of mechanical engineering at MIT, have published their results in the Journal of Fluid Mechanics.

Adjusting for the real world
For the most part, gravity waves and acoustic waves have been regarded as completely separate entities, one having no effect on the other. That's because their properties are so different, in both length and timescales.

While gravity is the main force acting to restore and stabilize surface-gravity waves (hence the name), its effect on sound waves is negligible. On the other hand, the fact that water is slightly compressible is what allows pressure waves, such as sound, to travel through, though this property has almost no effect on surface waves.

Kadri says the typical water wave equations used to characterize ocean wave interactions do not apply to acoustic-gravity waves, as they do not factor in compressibility and gravity effects.

"Without compressibility and gravity, we cannot describe low-frequency sound waves correctly," Kadri says. "This is one of the reasons why researchers have mostly overlooked acoustic-gravity waves."

Kadri derived a wave equation that includes compressibility and gravity as well as higher-order nonlinear terms.

"In linear theory, two surface-gravity waves traveling toward each other do not feel each other; they get closer, pass each other, and then move away without exchanging any form of energy, as if they have never met," Kadri explains.

"However, in reality the picture is more complicated, and nonlinear effects may come into play, resulting in energy exchange and even generation of new waves, sometimes. Here, at specific frequency ranges, gravity waves can actually produce an acoustic wave that has completely different properties - and that is amazing."

Rolling in the deep
The newly derived wave equation allowed Kadri to study the behavior of both acoustic and gravity waves. He analyzed the theoretical interactions within a wave triad consisting of two surface-gravity waves and one acoustic-gravity wave.

In 2013, he proved numerically that this configuration of waves should resonate, or exchange energy, meaning that as two of the three waves oscillate, they should drive the third wave to oscillate in response. Now, using the modified wave equation, along with multiple scales analysis, he derived what are called "evolution equations" to describe how the amplitudes of all three waves change as they exchange energy.

Surprisingly, he calculated that if two surface waves flow toward each other at roughly the same frequency and amplitude, as they meet and roll through each other the majority of their energy - up to 95 percent - can be turned into a sound wave, or acoustic-gravity wave.

This energy can fluctuate, depending on the initial amplitudes and frequencies of the surface-gravity waves. Even when the surface-gravity waves travel in the form of short bursts, they can still transfer over 20 percent of their energy to acoustic-gravity waves, an amount that cannot be neglected.

"This is incredible, just to think that these waves are so different," Kadri says. "Having them sharing energy is really exciting; this explains how some of the energy that comes from the atmosphere, from the sun and the wind, to the upper part of the ocean, can actually be driven to roll in the deep ocean through acoustic-gravity waves."

Kadri says the results may help scientists connect interactions between not only surface and deep ocean waters, but also with the atmospheric forces that affect surface waves.

Now Kadri is imparting this new understanding of wave interactions to a critical application: tsunami detection. He is working with the Woods Hole Oceanographic Institution to design a system to detect acoustic-gravity waves that precede a tsunami, traveling more than 10 times as fast as the more destructive wave.

"Severe sea states, such as tsunamis, rogue waves, storms, landslides, and even meteorite fall, can all generate acoustic-gravity waves," Kadri says. "We hope we can use these waves to set an early alarm for severe sea states in general and tsunamis in particular, and potentially save lives."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
Evidence aids tsunami hazard assessments from Alaska to Hawaii
Washington DC (SPX) Jan 13, 2016
New data for frequent large tsunamis at a remote island near Dutch Harbor, Alaska provides geological evidence to aid tsunami hazard preparedness efforts around the Pacific Rim. Recent fieldwork in Alaska's Aleutian Islands suggests that a presently "creeping" section of the Aleutian Subduction Zone fault could potentially generate an earthquake great enough to send a large tsunami across the Pa ... read more


SHAKE AND BLOW
New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

NASA releases strange 'music' heard by 1969 astronauts

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

SHAKE AND BLOW
Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

SHAKE AND BLOW
Tools and Talent at Michoud to Complete SLS Core Stage Welding in 2016

Orion Simulations Help Engineers Evaluate Mission Operations for Crew

Orion Test Hardware in Position for Solar Array Test

NASA Space Program Now Requires Russian Language

SHAKE AND BLOW
China to launch second space lab Tiangong-2 in Q3

China's moon lander Chang'e-3 enters 28th lunar day

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

SHAKE AND BLOW
Scott Kelly returns to earth, but science for NASA's journey to Mars continues

Orbital ATK Completes OA-4 Cargo Delivery Mission to ISS for NASA

Send your computer code into space with astronaut Tim Peake

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

SHAKE AND BLOW
Arianespace Soyuz to launch 2 Galileo satellites in May

SpaceX postpones rocket launch again

Russian rocket engines ban could leave US space program in limbo

SpaceX warns of failure in Wednesday's rocket landing

SHAKE AND BLOW
Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

Longest-Lasting Stellar Eclipse Discovered

SHAKE AND BLOW
Eco-friendly food packaging material doubles shelf-life of food products

Virtual reality is next as smartphone sales slow

Crystal and magnetic structure of multiferroic hexagonal manganite

Mystery of Dracula orchids' mimicry is unraveled with a 3-D printer









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.