Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
New test opens path for better 2-D catalysts
by Staff Writers
Houston TX (SPX) Oct 09, 2017


A technique developed by Rice University and Los Alamos National Laboratory will allow researchers to quickly probe atom-thick materials to measure hydrogen production. The Rice lab uses an electron beam to drill submicron holes through an insulating layer of poly(methyl methacrylate) to probe specific areas of nanoscale flakes. Credit: Jing Zhang/Rice University

Rice University researchers have taken a deep look into atom-thick catalysts that produce hydrogen to see precisely where it's coming from. Their findings could accelerate the development of 2-D materials for energy applications, such as fuel cells.

The Rice lab of materials scientist Jun Lou, with colleagues at Los Alamos National Laboratory, developed a technique to probe through tiny "windows" created by an electron beam and measure the catalytic activity of molybdenum disulfide, a two-dimensional material that shows promise for applications that use electrocatalysis to extract hydrogen from water.

Initial tests on two variations of the material proved that most production is coming from the thin sheets' edges. The researchers reported their results this month in Advanced Materials. Researchers already knew the edges of 2-D materials are where the catalytic action is, so any information that helps maximize it is valuable, Lou said.

"We're using this new technology to identify the active sites that have been long-predicted by theory," he said. "There was some indirect proof that the edge sites are always more active than the basal planes, but now we have direct proof."

The probe-bearing microchips developed at Los Alamos and the method created by Lou and lead author Jing Zhang, a Rice postdoctoral researcher, open a pathway to fast screening of potential hydrogen evolution reaction candidates among two-dimensional materials.

"The majority of the material is on the surface, and you want that to be an active catalyst, rather than just the edge," Lou said. "If the reaction only happens at the edge, you lose the benefit of having all the surface area provided by a 2-D geometry."

The lab tested molybdenum disulfide flakes with different crystalline structures known as "1T prime" (or distorted octahedral) and 2H (trigonal prismatic). "They're basically the same material with the same chemical composition, but the positions of their atoms are different," Lou said. "1T prime is metallic and 2H is a semiconductor."

He said researchers have so far experimentally proved the more conductive 1T prime was catalytic along its entire surface area, but the Rice study proved that to be not entirely accurate. "Our results showed the 1T prime edge is always more active than the basal plane. That was a new discovery," he said.

After making the flakes via chemical vapor deposition, Zhang used an electron beam evaporation method to deposit electrodes to individual flakes. He then added an insulating layer of poly(methyl methacrylate), a transparent thermoplastic, and burned a pattern of "windows" in the inert material through e-beam lithography. That allowed the researchers to probe both the edges and basal planes of the 2-D material, or just specific edges, at submicron resolution.

The 16 probes on the inch-square chip built at Los Alamos pulse energy into the flakes through the windows. When hydrogen is produced, it escapes as a gas but steals an electron from the material. That creates a current that can be measured through the electrodes. Probes can be addressed individually or all at once, allowing researchers to get data for multiple sites on a single flake or from multiple flakes.

Rapid testing will help researchers alter their microscopic materials more efficiently to maximize the basal planes' catalytic activity. "Now there's incentive to utilize the strength of this material - its surface area - as a catalyst," Lou said. "This is going to be a very good screening technique to accelerate the development of 2-D materials."

Research paper

TECH SPACE
Surfactants have surprising effect on nanobubble stability
Washington DC (SPX) Oct 05, 2017
Nanobubbles have recently gained popularity for their unique properties and expansive applications. Their large surface area and high stability in saturated liquids make nanobubbles ideal candidates for food science, medicine and environmental advancements. Nanobubbles also have long lifetimes of hours or days, and greater applicability than traditional macrobubbles, which typically only last fo ... read more

Related Links
Rice University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Fast-moving space industries create new ethical challenges

Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

Mapping NASA's Space Missions

TECH SPACE
Arianespace to launch COSMO-SkyMed satellites manufactured by Thales

New Zealand opens first rocket launch site

Arianespace signs contract for 10 Vega and Vega C launchers

Launch Vehicle and Missile Ascent Trajectories

TECH SPACE
Lockheed Martin Reveals New Details to its Mars Base Camp Vision

Lockheed Martin unveils reusable water-powered Mars lander

SpaceX's Musk unveils plan to reach Mars by 2022

Research sheds new light on how Earth and Mars were created

TECH SPACE
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

TECH SPACE
GomSpace and Luxembourg to develop space activities in the Grand Duchy

Spacepath Communications Acquires Tango Wave

Brodeur Partners Launches Entrepreneurial Space Group

SSL-Built Satellite for AsiaSat Begins Post-Launch Maneuvers According to Plan

TECH SPACE
Microlasers get a performance boost from a bit of gold

Atomistic simulations go the distance on metal strength

Surfactants have surprising effect on nanobubble stability

Teleoperating robots with virtual reality

TECH SPACE
MATISSE to Shed Light on the Formation of Earth and Planets

Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

Scientists propose new concept of terrestrial planet formation

TECH SPACE
Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement