Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
New technique takes cues from astronomy and ophthalmology to sharpen microscope images
by Staff Writers
Los Angeles CA (SPX) Apr 17, 2014


This image is a frame grab from a video showing imaging from an adaptive optics (AO) microscope operating in two-photon excitation (TPE) mode. Imaging shows a membrane-labeled subset of neurons in the brain of a living zebrafish embryo. This image shows what one would see with adaptive optics (AO) and deconvolution turned on. Image courtesy of Eric Betzig Lab, HHMI Janelia Farm Research Campus.

The complexity of biology can befuddle even the most sophisticated light microscopes. Biological samples bend light in unpredictable ways, returning difficult-to-interpret information to the microscope and distorting the resulting image. New imaging technology developed at the Howard Hughes Medical Institute's Janelia Farm Research Campus rapidly corrects for these distortions and sharpens high-resolution images over large volumes of tissue.

The approach, a form of adaptive optics, works in tissues that do not scatter light, making it well suited to imaging the transparent bodies of zebrafish and the roundworm Caenorhabditis elegans, important model organisms in biological research. Janelia group leader Eric Betzig says his team developed the new technology by combining adaptive optics strategies that astronomers and ophthalmologists use to cancel out similar distortions in their images.

In a report published online on April 13, 2014, in the journal Nature Methods, Betzig, postdoctoral fellow Kai Wang, and their colleagues show how the technique brings into focus the fine, branching structures and subcellular organelles of nerve cells deep in the living brain of a zebrafish. These structures remain blurry and indistinct under the same microscope without adaptive optics. "The results are pretty eye-popping," Betzig says. "This really takes the application of adaptive optics to microscopy to a completely different level."

"Our technique is really robust, and you don't need anything special to apply our technology. [In the future] it could be a very convenient add-on component to commercially available microscopes," says Wang, a postdoctoral researcher in Betzig's lab.

Over the last decade, Betzig and others have taken a cue from astronomers in using adaptive optics to correct for the light-bending heterogeneity of biological tissues. Astronomers apply adaptive optics by shining a laser high in the atmosphere in the same direction as an object they want to observe, Betzig explains.

The light returning from this so-called guide star gets distorted as it travels through the turbulent atmosphere back to the telescope. Using a tool called a wavefront sensor, astronomers measure this distortion directly, then use the measurements to deform a telescope mirror to cancel out the atmospheric aberrations. The correction gives a much clearer view of the target object they want to observe.

A microscopy technique that Betzig developed in 2010 with Na Ji, who is now also a group leader at Janelia, achieves similar results by using an isolated fluorescent object such as a cell body or an embedded bead in the tissue as the "guide star." This target is imaged many times from many different angles to determine the correction that should be applied.

While this approach works even in scattering tissues such as the mouse brain -- where the new technique does not -- the process is slow and exposes a sample to a lot of potentially damaging light. To improve images of large samples where the aberration changes quickly with position, researchers needed to speed up the correction process.

Betzig and Wang focused on devising an adaptive optics strategy for new microscopy methods that image dynamic processes non-invasively and at high resolution. Such technologies - such as the Bessel beam plane illumination microscope that Betzig's team developed in 2011 and the simultaneous multiview light sheet microscope developed by Janelia lab head Philipp Keller in 2012 - perform well on cells or small embryos, but image quality degrades in larger samples.

Those microscopes are used exclusively to image transparent samples, narrowing the scope of the problem. Betzig and Wang needed a rapid, non-invasive way to correct for heterogeneities in the composition of cells and tissues, but because it would only be used on transparent tissue, they did not need to compensate for light-scattering.

"If you're in a regime where there is no scattering, then you can do exactly what the astronomers do," Betzig says, explaining that because transparent tissue would not scramble the light waves returned from a guide star, they could detect and measure its wavefront directly.

The team created a guide star by focusing light from the microscope into a glowing point within the sample. Using a technique called two-photon excitation, they could penetrate infrared light deep within the tissue and illuminate a specific point. The wavefront sensor would then determine how the light that returned from this guide star had warped as it passed through the tissue, so that the appropriate correction could be applied.

However, because biological tissue is so heterogeneous, the situation was more complicated. "In biology, unlike astronomy, the wavefront errors are really complex," Betzig says. "As light from the guide star returns to the sensor, the wavefront gets much bumpier in microscopy than in astronomy. If you fix the guide star at a single point, that bumpiness confuses the sensor, so you don't get a good correction." Furthermore, a correction that works at one point won't be effective at a spot elsewhere in the sample that bends light waves in a different way.

The solution to this problem, Betzig and Wang determined, is to scan the guide star over a small region of the sample, instead of parking it in one spot. For the sensor to interpret the information returned from this moving guide star, the light must be made stationary, or "descanned." This is achieved by bouncing the light off the same mirrors that tilt to project the guide star to different points in the specimen. The resulting wavefront is used to generate an average correction over the scanned region.

Betzig explains that a similar strategy is incorporated into adaptive optics that corrects images of patients' retinas, which are distorted when light passes through the eye's cornea and lens. Measuring and correcting those aberrations is complicated by movements of patients' eyes, so ophthalmic imaging uses descan to average out motion-induced errors.

"We combined the descan concept from the ophthalmologists with the laser guide stars of the astronomers, and came up with what amounts to a really good solution for aberrating but non-scattering transparent samples, like the zebrafish," Betzig says.

"We kept on pushing this technology, and it turns out it works," says Wang. "When we compare the image quality before and after correction, it's very different. The corrected image tells a lot of information that biologists want to know."

To image of a large section of tissue, a microscope might generate and compile tens of thousands of images of smaller volumes, each requiring its own adaptive optics correction. So it is essential that those corrections are determined and applied quickly, Betzig says. The new technique handles the task well, updating its corrections in just 14 milliseconds. And when the microscope is used in its two-photon mode, the adaptive optics work automatically.

"You don't have to slow down or do anything different," Betzig says. "It's just happening in the background as you're running the microscope."

.


Related Links
Howard Hughes Medical Institute
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
A new twist for better steel
Providence RI (SPX) Apr 09, 2014
Researchers from Brown University and universities in China have found a simple technique that can strengthen steel without sacrificing ductility. The new technique, described in Nature Communications, could produce steel that performs better in a number of structural applications. Strength and ductility are both crucial material properties, especially in materials used in structural appli ... read more


TECH SPACE
Russian Federal Space Agency is elaborating Moon exploration program

Science, Discovery Channels to broadcast private race to the moon

Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

TECH SPACE
Gusev Crater once held a lake after all

Mars Exploration in a Deep Mine

Images From NASA Mars Rover Include Bright Spots

NASA's rover Curiosity discovers Australia on Mars, sort of

TECH SPACE
Veggie Will Expand Fresh Food Production on ISS

Reporters See NASA's Latest High Tech Exploration Tool Before Testing

Recycling astronaut urine for energy and drinking water

Orion Avionics System Ready for First Test Flight

TECH SPACE
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

TECH SPACE
'Cherry tree from space' mystery baffles Japan

Extra-terrestrial Tweet-up links Tokyo with space

Russian cargo ship docks to space station

Progress Departs, New Cargo Ships Awaiting Launch

TECH SPACE
NASA Ames Launches Nanosatellites, Science Experiments on SpaceX Rocket

On-board camera provides a unique perspective on Arianespace Flight VS07

The DZZ-HR satellite is fueled for Arianespace's upcoming Vega launch

EUTELSAT 3B Mission Status Update

TECH SPACE
Chance meeting creates celestial diamond ring

Faraway Moon or Faint Star? Possible Exomoon Found

The Importance of Planetary Plumes

Orbital physics is child's play with 'Super Planet Crash'

TECH SPACE
Vanguard Space Technologies Antenna Reflectors on Amazonas Satellite Launch

Middle Eastern country orders more border radar

Headwall Extends Global Reach in Asia/Pac and Israel

A new twist for better steel




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.