Subscribe free to our newsletters via your
. 24/7 Space News .




INTERNET SPACE
New technique speeds nanoMRI imaging
by Staff Writers
Washington DC (SPX) May 29, 2015


Basic principles of magnetic resonance force microscopy. Image courtesy B.A. Moores. For a larger version of this image please go here.

NanoMRI is a scanning technique that produces nondestructive, high-resolution 3-D images of nanoscale objects, and it promises to become a powerful tool for researchers and companies exploring the shape and function of biological materials such as viruses and cells in much the same way as clinical MRI today enables investigation of whole tissues in the human body.

Producing images with near-atomic resolution, however, is immensely difficult and time-consuming. A single nanoMRI scan can require weeks to complete.

Striving to overcome this limitation, researchers from ETH Zurich in Switzerland developed a parallel measurement technique, which they report in a paper appearing this week on the cover of the journal Applied Physics Letters, from AIP Publishing. Information that normally would be measured sequentially - one bit after another - can now be measured at the same time with a single detector.

"As a loose analogy, think of how your eyes register green, red, and blue information at the same time using different receptors - you're measuring different colors in parallel," said Alexander Eichler, a postdoctoral researcher and teaching assistant in Professor C. Degen's group within the Department of Physics at ETH Zurich.

Parallel measurement is also referred to as "multiplexing." After the scan, the researchers need to be able to distinguish where each bit of information belongs in the final picture. For this reason, "different bits of information are encoded in the detector using different phases," he explained. "The term 'phase' refers to a lag in a periodic signal. The phase can be used to differentiate between periodic signals in a way similar to how color is used to differentiate between light signals in the eye."

Magnetic resonance imaging makes use of the fact that certain atoms - such as 1H, 13C, or 19F - have nuclei that act like tiny spinning magnets. When these atoms are brought into a magnetic field, they rotate around the field axis in much the same way a spinning top rotates around its vertical axis when it isn't perfectly balanced.

"This rotation is called 'precession,' and it happens at a very precise frequency, known as the 'Larmor frequency,' which depends on the field strength and type of atom," said Eichler.

In a nonhomogeneous field, atoms at different locations have different Larmor frequencies. The atom's location "can be evaluated from the frequency at which it precesses, and an image of the location of all atoms can be composed," he added. "When you look at a clinical MRI picture, you see bright pixels where the density of atoms - typically 1H - is high, and dark pixels where the density is low."

The magnetic strength of a single atom is vanishingly small. "Clinical MRI is only possible because a single 3-D pixel - a "voxel" - contains about 1018 atoms," Eichler pointed out. "With nanoMRI, we want to detect voxels with only a thousand atoms or less, meaning that we need a sensitivity at least a quadrillion [10^15, or a million billion] times better."

To achieve this, various strategies have been developed. The research team working with Professor Degen demonstrated phase multiplexing with a particular nanoMRI technique called "magnetic resonance force microscopy" (MRFM), in which the atomic nuclei experience a tiny magnetic force that's transferred to a cantilever acting as a mechanical detector. In response to the magnetic force, the cantilever vibrates and then, in turn, an image can be assembled from the measured vibration.

"Our research overcomes one of the major obstacles toward practical high-resolution nanoMRI, namely the forbidding time scales required for sequential measurements," Eichler said. "It brings us closer to the commercial implementation of nanoMRI."

In other words, the team's work greatly accelerates the speed of nanoMRI measurements. By demonstrating parallel measurements of six data points, they've shown that a normal scan of two weeks can now be compressed to within two days.

"Acceleration is limited by technical issues such as the speed of spin reversal and the stability of phase-sensitive detection," Eichler noted. "But, in principle, phase multiplexing might allow compression rates of ten or more. With commercial applications in mind, this time gain is crucial because it makes a huge difference to a pharmaceutical company if a virus can be characterized within three days rather than a month."

Next, the researchers at ETH Zurich are turning their focus to nanoMRI measurements of biological systems. In particular, they'd "like to demonstrate a spatial resolution of better than 1 nanometer," Eichler said. "Taking into account that the number of atoms in a voxel scales with the cube of the length, this will require an improvement in sensitivity of more than 100 relative to prior work - the current record resolution is about 5 nanometers."

The preparation of biological objects for low-temperature, high-vacuum measurements is a particular challenge, because an ordinary cell, if transferred into vacuum, will simply burst from the pressure imbalance. "When the cell is cooled below the freezing point of water, the liquid inside it may crystallize and destroy the cell membrane," he added. "We're developing strategies to avoid these issues so that we can transfer cells or viruses into our measurement setup without damaging them."

The article, "Accelerated nanoscale magnetic resonance imaging through phase multiplexing," is authored by B.A. Moores, A. Eichler, Y. Tao, H. Takahashi, P. Navaretti and C.L. Degen. It will appear in the journal Applied Physics Letters on May 26, 2015


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Satellite-based Internet technologies






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERNET SPACE
Google unveils Android Pay in fresh challenge to Apple
San Francisco (AFP) May 28, 2015
Google on Thursday unveiled its pay-with-a-phone system for Android devices, ramping up its challenge to Apple in mobile payments. Android Pay, unveiled at the Google developers conference in San Francisco, brings together mobile carriers, payment networks, banks and retailers to allow smartphone users to use their handsets instead of payment cards. Google engineering vice president Dave ... read more


INTERNET SPACE
Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

INTERNET SPACE
NASA Begins Testing Next Mars Lander Insight

The Supreme Council of Parachute Experts

Science Drives NASA's Journey to Mars

The Moon or Mars: Flawed Debate, False Choice - Part One

INTERNET SPACE
New wave of smart tech on show at Taiwan's Computex

New urban landscape at Taiwan's Computex

Boeing Awarded First Commercial Human Spaceflight Mission

Like Sleeping Beauty, some research lies dormant for decades

INTERNET SPACE
China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

INTERNET SPACE
NASA Begins Major Reconfiguration of International Space Station

Roundworms have the Right Stuff

ISS module relocation makes way for Commercial Crew spacecraft

ISS Partners Adjust Spacecraft Schedule

INTERNET SPACE
Air Force Certifies SpaceX for National Security Space Missions

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

SpaceX cleared for US military launches

INTERNET SPACE
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

INTERNET SPACE
Saving money and the environment with 3-D printing

Thin coating on condensers could make power plants more efficient

New computational technique advances color 3D printing process

Scientists make tough biogel structures with 3-D printer




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.