. 24/7 Space News .
WATER WORLD
New technique offers clues to measure the deoxygenation of the ocean
by Staff Writers
Cape Cod MA (SPX) Aug 16, 2017


The new technique may lay the groundwork for projecting future oxygen losses in the ocean.

The living, breathing ocean may be slowly starting to suffocate. More than two percent of the ocean's oxygen content has been depleted during the last half century, according to reports, and marine "dead zones" continue to expand throughout the global ocean. This deoxygenation, triggered mainly by more fertilizers and wastewater flowing into the ocean, pose a serious threat to marine life and ecosystems.

Yet despite the critical role of oxygen in the ocean, scientists haven't had a way to measure how fast deoxygenation occurs--today, or in the past when so-called major "anoxic events" led to catastrophic extinction of marine life.

Now, researchers at the Woods Hole Oceanographic Institution, Arizona State University, and Florida State University have, for the first time, developed a way to quantify how fast deoxygenation occurred in ancient oceans. The research was published Aug. 9, 2017, in the journal Science Advances.

"To date, there haven't been quantitative tools available to scientists that are capable of accurately measuring the rate at which oxygen depletion happens," said Sune Nielsen, WHOI scientist and co-author of the paper.

"Can the ocean lose half its oxygen in a thousand years? This new tool will help us understand the rate at which deoxygenation was happening in the past, and eventually estimate how far present-day losses might extend into the future."

Along with warmer sea temperatures and ocean acidification, ocean deoxygenation is yet another threat to marine ecosystems that has scientists concerned. Triggered largely by human activities, expanding pockets of anoxic waters throughout the global ocean are making some fish habitats non-sustainable and having impacts on economically important fisheries.

The ocean's oxygen supply is being diminished by a number of factors. As runoff from fertilizers and wastewater make their way into the sea, they stimulate growth in phytoplankton, which process the nutrients and convert them to organic matter.

When the plankton die and sink, marine microbes consume the organic matter and use up oxygen in the water during the process. Hence, larger phytoplankton growth in surface waters can result in net oxygen loss throughout the ocean depths.

To determine how fast oxygen loss occurs in the ocean over long time scales, the researchers studied ancient seafloor sediments during one of the Earth's most extreme climate change events, known as Oceanic Anoxic Event 2.

It led to a major global extinction of marine animals 94 million years ago when dinosaurs roamed the Earth. The sediments preserve the thallium isotope composition of ancient seawater, which changes depending on the amount of oxygen in the deep ocean at the time they were deposited. The sediments pile up over time, with deeper levels corresponding to times further in the past.

The technique involves measuring isotopes of thallium in the sediments. The relative amount of the heavier thallium isotope increases as levels of deep-marine oxygen diminish. The researchers applied their new technique to analyze the oxygen loss from 94-million-year-old rock samples drilled below the seafloor off the coast of Suriname, South America.

The research began when Chadlin Ostrander (now, a Ph.D. student at Arizona State University) was an undergraduate Summer Student Fellow and Jeremy Owens (now an assistant professor at Florida State University) was a postdoctoral scientist at WHOI, working with Nielsen.

"We dissolved the rocks in our lab," explained Ostrander, "and then chemically separated everything but the element we needed for analysis: thallium. Then, using mass spectrometry, we were able to measure variations in that element as a proxy for changes in oxygen levels occurring over tens of thousands of years."

Based on the analysis, the researchers suspect that up to half of the deep ocean had become oxygen-depleted during Oceanic Anoxic Event 2, and remained anoxic for an estimated half-million years before it recovered. More significantly, they were able to draw a parallel between the rate of deoxygenation then and modern trends in oxygen loss now.

"Our results show that marine deoxygenation rates prior to the ancient event were likely occuring over tens of thousands of years, and surprisingly similar to the two percent oxygen depletion trend we're seeing induced by anthropogenic activity over the last fifty years," said Nielsen. "We don't know if the ocean is headed toward another global anoxic event, but the trend is, of course, worrying."

The new technique may lay the groundwork for projecting future oxygen losses in the ocean. But the scientists said that further insight into past deoxygenation patterns is needed to push their research forward. They plan to analyze additional ancient sediments to investigate what ocean oxygen levels looked like when large marine animals first emerged and how those conditions changed over time.

"At this point, we are only just beginning to understand how oxygen levels in the ocean have changed in the past," said Ostrander.

"But with our new tool, we've already learned that one of the most extreme climate events in the deep-time sedimentary record provides an uncomfortably reasonable analogue for possible future ocean deoxygenation and subsequent ecological shifts. We hope to be able to leverage this information to gain visibility into what the short-, medium- and long-term future will bring for oxygen content in the ocean."

WATER WORLD
Invasion of glowing tropical jellyfish baffles U.S. scientists
Washington (UPI) Aug 9, 2017
Hilarie Sorensen intended to do her master's thesis on crystal jellyfish, the half moon-shaped bioluminescent jellies that are ubiquitous off the West Coast. Instead she'll be researching a jelly-like creature she hadn't heard of before May. That was when the University of Oregon marine biology graduate student went on a two-week research cruise from San Francisco to Newport, Ore. "In p ... read more

Related Links
Woods Hole Oceanographic Institution
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

WATER WORLD
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

Dragon to be packed with new experiments for International Space Station

NASA taps BWXT for reactor design for future Mars missions

WATER WORLD
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

WATER WORLD
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

WATER WORLD
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Airbus DS to expand cooperation with Russia

UK space companies to develop international partnerships

WATER WORLD
BAE Systems reveals iMOTR radar system

Machine learning could be key to producing stronger, less corrosive metals

NASA Tests Autopilot Sensors During Simulations

Active machine learning for the discovery and crystallization of gigantic polyoxometalate molecules

WATER WORLD
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Unexpected life found at bottom of High Arctic lakes

WATER WORLD
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Twilight observations reveal huge storm on Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.